
Distributed Combinatorial Optimization
An Introduction

Evan A. Sultanik
Evan.Sultanik@jhuapl.edu

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 1

Evan.Sultanik@jhuapl.edu

Outline
Introduction

What is Combinatorial Optimization?
Relevance to Streaming
Distributed Optimization

Distributed Constraint Reasoning (DCR)
Constraint Reasoning Algorithms
Distributed Algorithms
Dynamic (“Streaming”) DCR

Approximation Algorithms
Generalizing the Schema
Multidirectional Graph Search
Examples

Conclusions

“ . . .it’s supposed to be a panacea that
satisfies everybody, at the risk of

satisfying nobody.”—Donald Knuth
Page v of The TEX Book

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 2

Outline
Introduction

What is Combinatorial Optimization?
Relevance to Streaming
Distributed Optimization

Distributed Constraint Reasoning (DCR)
Constraint Reasoning Algorithms
Distributed Algorithms
Dynamic (“Streaming”) DCR

Approximation Algorithms
Generalizing the Schema
Multidirectional Graph Search
Examples

Conclusions

“ . . .it’s supposed to be a panacea that
satisfies everybody, at the risk of

satisfying nobody.”—Donald Knuth
Page v of The TEX Book

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 2

Combinatorial Optimization
Definition
Combinatorial Optimization is the process of finding an optimal
subset of objects from within a finite set of objects.

Example: the Knapsack Problem

?
8 kg

$4 12 kg$2 1 kg

$2 2 kg

$1 1 kg

$10 4 kg

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 5

Integer Programming Encoding
Given a finite set of n objects each with a value v1, v2, . . . , vn and
a weight w1,w2, . . . ,wn, the knapsack problem asks to find a
subset of the objects whose combined weight does not exceed
a given maximum, wmax, and whose combined value is
maximized:

maximize
n∑

i=1

vixi

subject to:
n∑

j=1

wjxj ≤ wmax,

xk ∈ {0, 1}, k = 1 . . . n,

where the chosen set of objects is
S = {i ∈ {1, 2, . . . , n} : xi = 1}.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 6

Integer Programming Encoding
Given a finite set of n objects each with a value v1, v2, . . . , vn and
a weight w1,w2, . . . ,wn, the knapsack problem asks to find a
subset of the objects whose combined weight does not exceed
a given maximum, wmax, and whose combined value is
maximized:

maximize
n∑

i=1

vixi

subject to:
n∑

j=1

wjxj ≤ wmax,

xk ∈ {0, 1}, k = 1 . . . n,

where the chosen set of objects is
S = {i ∈ {1, 2, . . . , n} : xi = 1}.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 6

Integer Programming Encoding
Given a finite set of n objects each with a value v1, v2, . . . , vn and
a weight w1,w2, . . . ,wn, the knapsack problem asks to find a
subset of the objects whose combined weight does not exceed
a given maximum, wmax, and whose combined value is
maximized:

maximize
n∑

i=1

vixi

subject to:
n∑

j=1

wjxj ≤ wmax,

xk ∈ {0, 1}, k = 1 . . . n,

where the chosen set of objects is
S = {i ∈ {1, 2, . . . , n} : xi = 1}.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 6

Integer Programming Encoding
Given a finite set of n objects each with a value v1, v2, . . . , vn and
a weight w1,w2, . . . ,wn, the knapsack problem asks to find a
subset of the objects whose combined weight does not exceed
a given maximum, wmax, and whose combined value is
maximized:

maximize
n∑

i=1

vixi

subject to:
n∑

j=1

wjxj ≤ wmax,

xk ∈ {0, 1}, k = 1 . . . n,

where the chosen set of objects is
S = {i ∈ {1, 2, . . . , n} : xi = 1}.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 6

Example

maximize x1$2 + x2$4 + x3$10 + x4$1 + x5$2
subject to:

1x1 + 12x2 + 4x3 + 1x4 + 2x5 ≤ 8 kg,
xk ∈ {0, 1}, k = 1 . . . n.

?
8 kg

$4 12 kg$2 1 kg

$2 2 kg

$1 1 kg

$10 4 kg

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 7

Relevance to Streaming?
I Usually these problems are solved once. But what if the

problem itself changes over time?

?
8 kg

$6 15 kg$1 2 kg

$1 5 kg

$3 2 kg

$12 2 kg

I There is a stream of modification events
to which we must react and re-optimize.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 9

Dynamic Optimization

maximize x1$2 + x2$4 + x3$10 + x4$1 + x5$2

subject to:
1x1 + 12x2 + 4x3 + 1x4 + 2x5 ≤ 8 kg,
xk ∈ {0, 1}, k = 1 . . . n.

Optimal Solution
x1 = 1, x2 = 0, x3 = 1, x4 = 1, x5 = 1 (Payoff = $15)

Events (Time −→)

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 10

Dynamic Optimization

maximize x1$1 + x2$4 + x3$10 + x4$1 + x5$2

subject to:
1x1 + 12x2 + 4x3 + 1x4 + 2x5 ≤ 8 kg,
xk ∈ {0, 1}, k = 1 . . . n.

Optimal Solution
x1 = 1, x2 = 0, x3 = 1, x4 = 1, x5 = 1 (Payoff = $14)

Events (Time −→)

$2 7→ $1

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 10

Dynamic Optimization

maximize x1$1 + x2$4 + x3$10 + x4$1 + x5$2

subject to:
2x1 + 12x2 + 4x3 + 1x4 + 2x5 ≤ 8 kg,
xk ∈ {0, 1}, k = 1 . . . n.

Optimal Solution
x1 = 1, x2 = 0, x3 = 1, x4 = 0, x5 = 1 (Payoff = $13)

Events (Time −→)

$2 7→ $1 1 kg 7→ 2 kg

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 10

Dynamic Optimization

maximize x1$1 + x2$6 + x3$10 + x4$1 + x5$2

subject to:
2x1 + 12x2 + 4x3 + 1x4 + 2x5 ≤ 8 kg,
xk ∈ {0, 1}, k = 1 . . . n.

Optimal Solution
x1 = 1, x2 = 0, x3 = 1, x4 = 0, x5 = 1 (Payoff = $13)

Events (Time −→)

$2 7→ $1 1 kg 7→ 2 kg $4 7→ $6

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 10

Dynamic Optimization

maximize x1$1 + x2$6 + x3$10 + x4$1 + x5$2

subject to:
2x1 + 15x2 + 4x3 + 1x4 + 2x5 ≤ 8 kg,
xk ∈ {0, 1}, k = 1 . . . n.

Optimal Solution
x1 = 1, x2 = 0, x3 = 1, x4 = 0, x5 = 1 (Payoff = $13)

Events (Time −→)

$2 7→ $1 1 kg 7→ 2 kg $4 7→ $6 12 kg 7→ 15 kg

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 10

Dynamic Optimization

maximize x1$1 + x2$6 + x3$10 + x4$1 + x5$2

subject to:
2x1 + 15x2 + 4x3 + 1x4 + 2x5 ≤ 20 kg,
xk ∈ {0, 1}, k = 1 . . . n.

Optimal Solution
x1 = 0, x2 = 1, x3 = 1, x4 = 1, x5 = 0 (Payoff = $17)

Events (Time −→)

$2 7→ $1 1 kg 7→ 2 kg $4 7→ $6 12 kg 7→ 15 kg = 20 kg

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 10

Distributed Optimization
A set of agents distributedly decide which objects to choose.

?
8 kg

$4 12 kg$2 1 kg

$2 2 kg

$1 1 kg

$10 4 kg

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 12

Distributed Optimization
Each agent only knows about a subset of the objects.

?
8 kg

$4 12 kg$2 1 kg

$2 2 kg

$1 1 kg

$10 4 kg

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 12

Distributed Optimization
They will have to negotiate to solve the problem.

?
8 kg

$4 12 kg$2 1 kg

$2 2 kg

$1 1 kg

$10 4 kg

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 12

Why Distribute?

Privacy No single agent knows the entire world-state.
Example: Meeting Scheduling

Locality The problem is naturally distributed; extra effort is
required to centralize the world-state for a
centralized optimization algorithm.
Example: Sensor Networks

Efficiency Each agent is, in effect, its own processor, so we
might achieve a speedup from parallelism.
Example: Cloud Computing

a2
a1

a3

a4

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 13

Space Complexity

C
om

pu
ta

tio
na

lC
om

pl
ex

ity

c log n n n log n nc

n
n

lo
g

n
nc

cn
n!

b

f

a

d

c

h

e

g

Stable

a Heapsort

b Merge sort

c Introsort

d Bubblesort

e Strand sort

f Quicksort†

g Brute force (DFS)

h Bogosort

†Assuming that memory pointers require logarithmic space.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 14

Efficient Sequential Algorithms

I Moore’s Law: processor speed doubles about every two
years.

I If an algorithm has computational complexity O(nc) and
current hardware can only solve problems of size n, then
we will only have to wait O(log n) years1 until hardware can
solve a problem of size n + 1.

I Conclusion: polynomial runtime is desirable in sequential
algorithms!

1More precisely, about c× log2

(
n+1

n

)
years.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 15

Space Complexity

C
om

pu
ta

tio
na

lC
om

pl
ex

ity

c log n n n log n nc

n
n

lo
g

n
nc

cn
n!

Com
munica

tio
n

a

Optim
al

Non-Optimal b

c

d

a DSA

b (BnB-)Adopt

c DPOP

d MB-DPOP(1)

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 16

66m
s

∫ ∞
0−

e−st
tdt =?

Latency

Conclusion
In distributed
algorithms, there is
no equivalent to
Moore’s law! Number
of different metrics to
optimize (e.g.,
rounds, messages,
latency, &c.).

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 17

When to distribute?

Network Topology

Interaction Graph

a1

a2

a3
a4

a5

a6

I the problem itself is naturally distributed;
I local properties of the problem seem to allow for speedups

from distributed processing;
I in certain environments, such as sensor networks,

hardware restrictions might necessitate decentralization in
order to save memory/power/&c.;

I privacy (no central node can be trusted); and
I ultimately need O(n) messaging rounds.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 18

Constraint Reasoning
(a.k.a. “Constraint Programming”)

Idea: Model problems as systems of constraints.

I Set of variables: V = {v1, v2, . . . , vn}
I Each variable has an associated domain from which it can

be assigned a value: D = {D1,D2, . . . ,Dn}.
I There are a set of constraints that dictate costs for certain

variable assignments:

f :
⋃

S∈2V

∏
vi∈S

({vi} × Di)→ R.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 20

Example: Graph Coloring
Graph G = 〈V,E〉:

C

A B

D!

V = {vA, vB, vC, vD}
DA = DB = DC = {�,�,�}

f (〈vi, dk〉, 〈vj, d`〉) 7→ 1 if 〈vi, vj〉 ∈ E ∧ dk = d`.

(incur a cost of 1)
(two neighboring vertices are
assigned the same color)

Goal
Find a mapping from variables to domains that minimizes f .

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 21

Acyclic Constraint Graphs
Consider this graph coloring problem.

A

B

C

D

E

F

A B C D E F

A B C D E F
��� ��� ��� ���

�

�

�

�

��

A Common Approximation:
Remove constraints until the constraint graph becomes acyclic!

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 23

Acyclic Constraint Graphs
Note that E and F have unary constraints dictating their colors.

A

B

C

D

E

F

A B C D E F

A B C D E F
��� ��� ��� ���

�

�

�

�

��

A Common Approximation:
Remove constraints until the constraint graph becomes acyclic!

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 23

Acyclic Constraint Graphs
Perform a DFS traversal of the constraint graph. . .

A

B

C

D

E

F A B C D E F

A B C D E F
��� ��� ��� ���

�

�

�

�

��

A Common Approximation:
Remove constraints until the constraint graph becomes acyclic!

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 23

Acyclic Constraint Graphs
In reverse order, remove inconsistent entries in the domains.

A

B

C

D

E

F A B C D E F

A B C D E F
��� ��

�

���

��

�

�

�

�

�

��

A Common Approximation:
Remove constraints until the constraint graph becomes acyclic!

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 23

Acyclic Constraint Graphs
Working in order, choose values remaining in the domains.

A

B

C

D

E

F A B C D E F

A B C D E F
�

�� �

�

�

�

�� ��

�

�

�

�

�

��

A Common Approximation:
Remove constraints until the constraint graph becomes acyclic!

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 23

Acyclic Constraint Graphs

This algorithm runs in O(|D|2|V|) time.

A

B

C

D

E

F A B C D E F

A B C D E F
�

�� �

�

�

�

�� ��

�

�

�

�

�

��

A Common Approximation:
Remove constraints until the constraint graph becomes acyclic!

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 23

Distributed Constraint Reasoning

Idea: Model inherently distributed problems as systems of
constraints.

Number of Players
ONE MULTIPLE

Problem
Dynamism

STATIC
Mathematical
Programming

(Static) Game
Theory

DYNAMIC
Optimal Control

Theory
Dynamic/Differential

Game Theory

DCR

Streaming

Definition
An “Agent” is a situated computational process
with one or more of the following properties:
autonomy, proactivity and interactivity.

Variables are assigned by agents:

8 kg

$4 12 kg$2 1 kg

$2 2 kg

$1 1 kg

$10 4 kg

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 25

Distributed Constraint Reasoning

Idea: Model inherently distributed problems as systems of
constraints.

Number of Players
ONE MULTIPLE

Problem
Dynamism

STATIC
Mathematical
Programming

(Static) Game
Theory

DYNAMIC
Optimal Control

Theory
Dynamic/Differential

Game Theory

DCR

Streaming

Definition
An “Agent” is a situated computational process
with one or more of the following properties:
autonomy, proactivity and interactivity.

Variables are assigned by agents:

8 kg

$4 12 kg$2 1 kg

$2 2 kg

$1 1 kg

$10 4 kg

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 25

Algorithms: DisCSP

Early DCR research focused on DisCSP:

I Asynchronous Backtracking (1992)
I Asynchronous Weak-Commitment (1994)
I Distributed Breakout (1995)← local search
I Distributed Forward Checking (2000)

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 26

Distributed Stochastic Algorithm
I Idea: Perform a greedy, local search.
I Very fast!
I No guarantee of optimality (can get stuck in local minima).

Example: Graph Coloring

C

A B

D

!

!

!

W. Zhang, G. Wang, and L. Wittenburg
Distributed Stochastic Search for Constraint Satisfaction and Optimization:
Parallelism, Phase Transitions and Performance
In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 27

Distributed Stochastic Algorithm
I Idea: Perform a greedy, local search.
I Very fast!
I No guarantee of optimality (can get stuck in local minima).

Each agent controls a vertex.

!

!

!

W. Zhang, G. Wang, and L. Wittenburg
Distributed Stochastic Search for Constraint Satisfaction and Optimization:
Parallelism, Phase Transitions and Performance
In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 27

Distributed Stochastic Algorithm
I Idea: Perform a greedy, local search.
I Very fast!
I No guarantee of optimality (can get stuck in local minima).

Agents randomly choose a value from their domain. . .

!

!

!

W. Zhang, G. Wang, and L. Wittenburg
Distributed Stochastic Search for Constraint Satisfaction and Optimization:
Parallelism, Phase Transitions and Performance
In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 27

Distributed Stochastic Algorithm
I Idea: Perform a greedy, local search.
I Very fast!
I No guarantee of optimality (can get stuck in local minima).

. . . then broadcast their choices to neighbors.

!

!

!

W. Zhang, G. Wang, and L. Wittenburg
Distributed Stochastic Search for Constraint Satisfaction and Optimization:
Parallelism, Phase Transitions and Performance
In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 27

Distributed Stochastic Algorithm
I Idea: Perform a greedy, local search.
I Very fast!
I No guarantee of optimality (can get stuck in local minima).

If conflict, choose another value given neighbors’ choices.

!

!

!

W. Zhang, G. Wang, and L. Wittenburg
Distributed Stochastic Search for Constraint Satisfaction and Optimization:
Parallelism, Phase Transitions and Performance
In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 27

Distributed Stochastic Algorithm
I Idea: Perform a greedy, local search.
I Very fast!
I No guarantee of optimality (can get stuck in local minima).

Re-broadcast to neighbors.

!

!

!

W. Zhang, G. Wang, and L. Wittenburg
Distributed Stochastic Search for Constraint Satisfaction and Optimization:
Parallelism, Phase Transitions and Performance
In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 27

Distributed Stochastic Algorithm
I Idea: Perform a greedy, local search.
I Very fast!
I No guarantee of optimality (can get stuck in local minima).

Resolve conflicts.

!

!

!

W. Zhang, G. Wang, and L. Wittenburg
Distributed Stochastic Search for Constraint Satisfaction and Optimization:
Parallelism, Phase Transitions and Performance
In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 27

Distributed Stochastic Algorithm
I Idea: Perform a greedy, local search.
I Very fast!
I No guarantee of optimality (can get stuck in local minima).

Re-broadcast to neighbors.

!

!

!

W. Zhang, G. Wang, and L. Wittenburg
Distributed Stochastic Search for Constraint Satisfaction and Optimization:
Parallelism, Phase Transitions and Performance
In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 27

Distributed Stochastic Algorithm
I Idea: Perform a greedy, local search.
I Very fast!
I No guarantee of optimality (can get stuck in local minima).

Resolve conflicts.

!

!

!

W. Zhang, G. Wang, and L. Wittenburg
Distributed Stochastic Search for Constraint Satisfaction and Optimization:
Parallelism, Phase Transitions and Performance
In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 27

Provably Optimal DCOP
Algorithms

Idea: Maintain a structure (like a spanning tree) to organize the
problem.

I parallel asynchronous exploration of disjoint subproblems,
reminiscent of iterative A* search (ADOPT, 2003);

I incremental partial centralization (OptAPO, 2004);
I dynamic programming (DPOP, 2006); and
I distributed branch-and-bound, both synchronous (NCBB,

2006) and asynchronous (BnB-ADOPT, 2007);
I hybrid additionally using local search (ADOPT-ing, 2007).

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 28

Dynamic (i.e., Streaming) DCR

I DSA: Every time a modification event occurs, simply
re-resolve conflicts!

I Pseudotree-Based Algorithms: Need a method to
dynamically maintain a depth-first spanning tree (e.g.,
Superstabilizing DFS [Collin & Dolev, 1994] or Mobed
[Sultanik, et al., 2010]).

I Alternative: Use an adapter that automatically resets the
algorithm whenever an event occurs that invalidates the
current state.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 30

Dynamic (i.e., Streaming) DCOPs

The Dynamic DCR “Adapter”

Out

In

Reset

DCR Algo.
Adapter

Out

In

Reset

DCR Algo.
AdapterM

es
sa

ge
Message

Message

M
essage

Message

Message

Out

In

Out

In

Network

R. Lass, E. Sultanik, and
W. Regli
Dynamic Distributed Constraint
Reasoning.
In Proceedings of the
Twenty-Third AAAI Conference
on Artificial Intelligence, 2008.

If the adapter detects
an event that
invalidates the current
state of the algorithm,
re-solve from scratch.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 31

General Approximation Schema

Optimization Problem

Integer Programming Formulation (IP)

Relaxed to a Continuous Optimization Formulation

Solution to the Continuous Problem

Approximated Solution to (IP)

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 33

The Primal-Dual Formulation

For any linear program there is a dual linear program:

max ctx
s.t. Ax≥b

x≥0
⇐⇒

min bty
s.t. Aty≤c

y≤0

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 34

The Steiner Forest Problem

Example

1

2

3

4

5

Objective: Find a mini-
mum weight forest (e.g.,

) that connects all
nodes to each other, pos-
sibly utilizing nodes.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 35

Example: Encoding Steiner Forest
Whether or not an edge e will be in the forest: xe ∈ {0, 1}.

min
∑
e∈E

w(e)xe

s.t.
∑

e∈δ(S)

xe ≥ f (S), ∀S ⊂ V : S 6= ∅

xe ≥ 0, ∀e ∈ E,

max
∑
S⊂V

f (S)yS

s.t.
∑

S:e∈δ(S)

yS ≤ we, ∀e ∈ E

yS ≥ 0, ∀S ⊂ V : S 6= ∅.

1

2

3

4

5

M. Aggarwal and N. Garg
A Scaling Technique for
Better Network Design.
In Proceedings of the Fifth
Annual ACM-SIAM
Symposium on Discrete
Algorithms, 2001.

Note: looks like exponential constraints!

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 36

Example: Encoding Steiner Forest
The weight of edge e: w(e).

min
∑
e∈E

w(e)xe

s.t.
∑

e∈δ(S)

xe ≥ f (S), ∀S ⊂ V : S 6= ∅

xe ≥ 0, ∀e ∈ E,

max
∑
S⊂V

f (S)yS

s.t.
∑

S:e∈δ(S)

yS ≤ we, ∀e ∈ E

yS ≥ 0, ∀S ⊂ V : S 6= ∅.

1

2

3

4

5

M. Aggarwal and N. Garg
A Scaling Technique for
Better Network Design.
In Proceedings of the Fifth
Annual ACM-SIAM
Symposium on Discrete
Algorithms, 2001.

Note: looks like exponential constraints!

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 36

Example: Encoding Steiner Forest
f (S) = 1 iff ∅ 6= S ∩ { 1 , 2 , 4 } 6= { 1 , 2 , 4 }

min
∑
e∈E

w(e)xe

s.t.
∑

e∈δ(S)

xe ≥ f (S), ∀S ⊂ V : S 6= ∅

xe ≥ 0, ∀e ∈ E,

max
∑
S⊂V

f (S)yS

s.t.
∑

S:e∈δ(S)

yS ≤ we, ∀e ∈ E

yS ≥ 0, ∀S ⊂ V : S 6= ∅.

1

2

3

4

5

M. Aggarwal and N. Garg
A Scaling Technique for
Better Network Design.
In Proceedings of the Fifth
Annual ACM-SIAM
Symposium on Discrete
Algorithms, 2001.

Note: looks like exponential constraints!

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 36

Example: Encoding Steiner Forest

The weight of edge e: w(e).

min
∑
e∈E

w(e)xe

s.t.
∑

e∈δ(S)

xe ≥ f (S), ∀S ⊂ V : S 6= ∅

xe ≥ 0, ∀e ∈ E,

max
∑
S⊂V

f (S)yS

s.t.
∑

S:e∈δ(S)

yS ≤ we, ∀e ∈ E

yS ≥ 0, ∀S ⊂ V : S 6= ∅.

1

2

3

4

5

M. Aggarwal and N. Garg
A Scaling Technique for
Better Network Design.
In Proceedings of the Fifth
Annual ACM-SIAM
Symposium on Discrete
Algorithms, 2001.

Note: looks like exponential constraints!

Each variable in the
primal becomes a
constraint in the dual

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 36

Example: Encoding Steiner Forest

The weight of edge e: w(e).

min
∑
e∈E

w(e)xe

s.t.
∑

e∈δ(S)

xe ≥ f (S), ∀S ⊂ V : S 6= ∅

xe ≥ 0, ∀e ∈ E,

max
∑
S⊂V

f (S)yS

s.t.
∑

S:e∈δ(S)

yS ≤ we, ∀e ∈ E

yS ≥ 0, ∀S ⊂ V : S 6= ∅.

1

2

3

4

5

M. Aggarwal and N. Garg
A Scaling Technique for
Better Network Design.
In Proceedings of the Fifth
Annual ACM-SIAM
Symposium on Discrete
Algorithms, 2001.

Note: looks like exponential constraints!

Each constraint in the
primal becomes a
variable in the dual

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 36

Example: Encoding Steiner Forest
This is a mechanical process!

min
∑
e∈E

w(e)xe

s.t.
∑

e∈δ(S)

xe ≥ f (S), ∀S ⊂ V : S 6= ∅

xe ≥ 0, ∀e ∈ E,

max
∑
S⊂V

f (S)yS

s.t.
∑

S:e∈δ(S)

yS ≤ we, ∀e ∈ E

yS ≥ 0, ∀S ⊂ V : S 6= ∅.

1

2

3

4

5

M. Aggarwal and N. Garg
A Scaling Technique for
Better Network Design.
In Proceedings of the Fifth
Annual ACM-SIAM
Symposium on Discrete
Algorithms, 2001.

Note: looks like exponential constraints!

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 36

Example: Encoding Steiner Forest

The weight of edge e: w(e).

min
∑
e∈E

w(e)xe

s.t.
∑

e∈δ(S)

xe ≥ f (S), ∀S ⊂ V : S 6= ∅

xe ≥ 0, ∀e ∈ E,

max
∑
S⊂V

f (S)yS

s.t.
∑

S:e∈δ(S)

yS ≤ we, ∀e ∈ E

yS ≥ 0, ∀S ⊂ V : S 6= ∅.

1

2

3

4

5

M. Aggarwal and N. Garg
A Scaling Technique for
Better Network Design.
In Proceedings of the Fifth
Annual ACM-SIAM
Symposium on Discrete
Algorithms, 2001.

Note: looks like exponential constraints!

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 36

Properties of the Schema
TERM MEANING
OP Optimization Problem
IP Integer Programming Formulation of OP
LP Continuous Optimization Relaxation of IP
D The Dual of LP
Z∗LP/Z∗D/Z∗IP Cost of the Optimal Solution to LP/D/IP

NAME PROPERTY

Weak Duality The cost of any feasible solution
to D is a lower bound on the so-
lution to LP.

Strong Duality Z∗D = Z∗LP ≤ Z∗IP
Complementary Slackness A primal variable can be posi-

tive iff its associated dual con-
straint is tight.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 37

Algorithmic Form of the
Primal-Dual Schema

1: procedure PRIMAL-DUAL(IP)
2: Let (CO) be the continuous optimization relaxation of (IP).
3: Let (D) be the dual to (CO).
4: Initialize vectors x = 0 and y = 0 which are, respectively, the solutions for (CO)

and (D). /* Note that y will initially be dual feasible, but x will not necessarily be
primal feasible. */

5: while x is primal infeasible do
6: While maintaining dual feasibility, deterministically increase the dual values

yi until one dual constraint becomes tight (i.e., that variable cannot be increased
any more without breaking a dual constraint).

7: For a subset of the tight dual constraints, increase the primal variable
corresponding to them by an integral amount.

8: The cost of the dual solution is used as a lower bound on OPT.

V. Vazirani
Approximation Algorithms.
Springer-Verlag, Berlin, 2001.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 38

The (Sequential) Algorithm

1

2

3

4

5

(We will assume unit

edge weights for

simplicity.)

d(1) = 1.5 F = {{1, 2}, {1, 3}, {3, 4}}
d(2) = 1.5 C = {{1, 2, 3, 4}, {5}}
d(3) = 0.5 e = 〈3, 4〉
d(4) = 1.5 ε = 0.5
d(5) = 0

←↩ Restart Prev Next Skip Execution

1: procedure CONSTRAINED-FOREST(G, w, f)
2: F ← ∅ /* Implicitly set yS for all S ⊂ V */

3: C ← {{v} : v ∈ V}
4: for all v ∈ V do
5: d(v)← 0
6: while ∃C ∈ C : f (C) = 1 do

7: Find an edge e = 〈i, j〉 such that µ(i) 6= µ(j) and ε =
w(e)− d(i)− d(j)

f (µ(i)) + f (µ(j))
is minimized.

8: F ← F ∪ {e}.
9: for all v ∈ V do

10: d(v)← d(v) + ε· f (µ(v)) /* Implicitly set yC ← yC + ε· f (C) for all C ∈ C. */
11: C ← C ∪ {µ(i) ∪ µ(j)} − {µ(i)} − {µ(j)}
12: F ← {e ∈ F : For some connected component N of (V, F − {e}), f (N) = 1)}

D. Williamson, M. Goemans, M. Mihail, and V. Vazirani
A primal-dual approximation algorithm for generalized steiner network problems.
Combinatorica, 15(3):435–454, 1995.

Can solve other problems for different f !
More on this in a bit. . .

Local Computation!
Modulo some handling of race conditions. . .

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 39

The (Sequential) Algorithm

1

2

3

4

5

(We will assume unit

edge weights for

simplicity.)

d(1) = 1.5 F = {{1, 2}, {1, 3}, {3, 4}}
d(2) = 1.5 C = {{1, 2, 3, 4}, {5}}
d(3) = 0.5 e = 〈3, 4〉
d(4) = 1.5 ε = 0.5
d(5) = 0

←↩ Restart Prev Next Skip Execution

1: procedure CONSTRAINED-FOREST(G, w, f)
2: F ← ∅ /* Implicitly set yS for all S ⊂ V */

3: C ← {{v} : v ∈ V}
4: for all v ∈ V do
5: d(v)← 0
6: while ∃C ∈ C : f (C) = 1 do

7: Find an edge e = 〈i, j〉 such that µ(i) 6= µ(j) and ε =
w(e)− d(i)− d(j)

f (µ(i)) + f (µ(j))
is minimized.

8: F ← F ∪ {e}.
9: for all v ∈ V do

10: d(v)← d(v) + ε· f (µ(v)) /* Implicitly set yC ← yC + ε· f (C) for all C ∈ C. */
11: C ← C ∪ {µ(i) ∪ µ(j)} − {µ(i)} − {µ(j)}
12: F ← {e ∈ F : For some connected component N of (V, F − {e}), f (N) = 1)}

D. Williamson, M. Goemans, M. Mihail, and V. Vazirani
A primal-dual approximation algorithm for generalized steiner network problems.
Combinatorica, 15(3):435–454, 1995.

Can solve other problems for different f !
More on this in a bit. . .

Local Computation!
Modulo some handling of race conditions. . .

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 39

The (Sequential) Algorithm

1

2

3

4

5

(We will assume unit

edge weights for

simplicity.)

d(1) = 1.5 F = {{1, 2}, {1, 3}, {3, 4}}
d(2) = 1.5 C = {{1, 2, 3, 4}, {5}}
d(3) = 0.5 e = 〈3, 4〉
d(4) = 1.5 ε = 0.5
d(5) = 0

←↩ Restart Prev Next Skip Execution

1: procedure CONSTRAINED-FOREST(G, w, f)
2: F ← ∅ /* Implicitly set yS for all S ⊂ V */

3: C ← {{v} : v ∈ V}
4: for all v ∈ V do
5: d(v)← 0
6: while ∃C ∈ C : f (C) = 1 do

7: Find an edge e = 〈i, j〉 such that µ(i) 6= µ(j) and ε =
w(e)− d(i)− d(j)

f (µ(i)) + f (µ(j))
is minimized.

8: F ← F ∪ {e}.
9: for all v ∈ V do

10: d(v)← d(v) + ε· f (µ(v)) /* Implicitly set yC ← yC + ε· f (C) for all C ∈ C. */
11: C ← C ∪ {µ(i) ∪ µ(j)} − {µ(i)} − {µ(j)}
12: F ← {e ∈ F : For some connected component N of (V, F − {e}), f (N) = 1)}

D. Williamson, M. Goemans, M. Mihail, and V. Vazirani
A primal-dual approximation algorithm for generalized steiner network problems.
Combinatorica, 15(3):435–454, 1995.

Can solve other problems for different f !
More on this in a bit. . .

Local Computation!
Modulo some handling of race conditions. . .

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 39

Generalizing the Indicator Function
min

∑
e∈E

w(e)xe

s.t.
∑

e∈δ(S)

xe ≥ f (S), ∀S ⊂ V : S 6= ∅

xe ≥ 0, ∀e ∈ E,

max
∑
S⊂V

f (S)yS

s.t.
∑

S:e∈δ(S)

yS ≤ we, ∀e ∈ E

yS ≥ 0, ∀S ⊂ V : S 6= ∅.

Steiner Forest: f (S) = 1 iff ∅ 6= S ∩ { 1 , 2 , 4 } 6= { 1 , 2 , 4 }

“Wouldn’t it be totally radical if we could solve a seemingly
completely different problem simply by tweaking the defi-
nition of f ?∗ ”∗ May not be a direct quote.

M. Goemans and D. Williamson
A General Approximation Technique for Constrained Forest Problems.
SIAM Journal on Computing, 24:296–317, 1995.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 41

Constrained Forest Problems
min

∑
e∈E

w(e)xe

s.t.
∑

e∈δ(S)

xe ≥ f (S), ∀S ⊂ V : S 6= ∅

xe ≥ 0, ∀e ∈ E,

max
∑
S⊂V

f (S)yS

s.t.
∑

S:e∈δ(S)

yS ≤ we, ∀e ∈ E

yS ≥ 0, ∀S ⊂ V : S 6= ∅.
NAME PROBLEM f (S) = 1 iff . . .
Minimum-weight per-
fect matching

Find a minimum-cost set of non-adjacent
edges that cover all vertices.

|S| is odd.

T-join Given an even subset T of vertices, find a
minimum-cost set of edges that has odd
degree at vertices in T and even degree
at vertices not in T.

|S ∩ T| is odd.

Minimum spanning
tree/forest

Find a minimum weight forest that maxi-
mizes connectivity between vertices.

∃u ∈ S, v /∈ S : u v ∈ G

Generalized Steiner
tree

Find a minimum-cost forest that connects
all vertices in Ti for i = 1, . . . , p.

∃i ∈ {1, . . . , p} : ∅ 6= S ∩ Ti 6= Ti.

Point-to-point connec-
tion

Given a set C = {c1, . . . , cp} of
sources and a set D = {d1, . . . , dp}
of destinations in a graph G = 〈V, E〉,
find a minimum-cost set F of edges such
that each source-destination pair is con-
nected in F.

|S ∩ C| 6= |S ∩ D|.

Partitioning (w/triangle
inequality)

Find a minimum-cost collection of vertex-
disjoint trees, paths, or cycles that cover
all vertices.

S 6≡ 0(mod k).

Location design/routing Select depots among a subset D of ver-
tices of a graph G = 〈V, E〉 and cover
all vertices in V with a set of cycles, each
containing a selected depot, while mini-
mizing the sum of the fixed costs of open-
ing depots and the sum of the costs of
the edges in the cycles.

∅ 6= S ⊆ V

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 42

Proper Functions
min

∑
e∈E

w(e)xe

s.t.
∑

e∈δ(S)

xe ≥ f (S), ∀S ⊂ V : S 6= ∅

xe ≥ 0, ∀e ∈ E,

max
∑
S⊂V

f (S)yS

s.t.
∑

S:e∈δ(S)

yS ≤ we, ∀e ∈ E

yS ≥ 0, ∀S ⊂ V : S 6= ∅.

A function on the powerset of a set of vertices, f : 2V → {0, 1},
is said to be proper if the following are true:

PROPERTY NAME RULE

Null f (∅) = 0
Symmetry ∀S ⊆ V : f (S) = f (V − S)

Disjointness ∀A,B ⊆ V : (A ∩ B = ∅)
=⇒ f (A ∪ B) ≤ max{f (A), f (B)}.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 43

Proper Functions (Continued)

I If f is proper then the sequential algorithm will. . .
I . . .run in polynomial time; and
I . . .produce a solution that is 2-OPT

(i.e., the cost will be no more than two times the cost of the
optimal solution).

I “Constrained Forest Problems”
I Many constrained forest problems are NP-HARD.
I Various extensions (e.g., supermodular, well spaced, &c.).

Surprise!
The sequential 2-approximation result can be generalized to a
large family of functions and efficiently distributed for optimizing
over streams.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 44

“Natural” Organization
Scott Aaronson
NP-complete Problems and Physical Reality
SIGACT News 36(1):30–52, 2005.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 46

“Natural” Organization

Scott Aaronson
NP-complete Problems and Physical Reality
SIGACT News 36(1):30–52, 2005.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 46

“Natural” Organization

Scott Aaronson
NP-complete Problems and Physical Reality
SIGACT News 36(1):30–52, 2005.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 46

“Natural” Organization

Scott Aaronson
NP-complete Problems and Physical Reality
SIGACT News 36(1):30–52, 2005.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 46

Search
(Foreshadowing!)

I DFS: Stack
I BFS: Queue
I Best-first: Priority

Queue
I A∗: Priority Queue with

Heuristic

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 47

Bidirectional Search

I Modified GOAL-TEST and
an optimal search
guaranteed optimality.

I Speedup from
parallelism.

I Question: What if Erdős
wants to join the party? ?

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 48

Multidirectional Graph Search?

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 49

Multidirectional Graph Search?

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 49

Multidirectional Graph Search?

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 49

Multidirectional Graph Search?

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 49

Multidirectional Graph Search?

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 49

Multidirectional Graph Search?

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 49

Multidirectional Graph Search?

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 49

Multidirectional Graph Search?

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 49

Multidirectional Graph Search?

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 49

Multidirectional Graph Search?

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 49

Multidirectional Graph Search?

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 49

Multidirectional Graph Search?

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 49

Multidirectional Graph Search?

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 49

Multidirectional Graph Search
Challenges

I How do we prevent cycles?

I How do we ensure correctness/completeness?
I Optimality?

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 50

Generalized Distributed
Constrained Forest Algorithm
for Multidirectional Graph Search

1: procedure MULTIDIRECTIONAL-GRAPH-SEARCH(v)
Require: v is the start vertex running this search.
Ensure: H = 〈Ṽ, Ẽ〉 is the resulting forest.

2: Ṽ ← {v}
3: Ẽ← ∅
4: F ← our neighbors /* The fringe of our search */
5: g(v)← 0 for all v ∈ V /* Initialize the path-cost function to 0 */
6: while Our interaction constraints are still unsatisfied do
7: Find an edge e = 〈u, v〉 in the fringe that minimizes ε = w(e)− g(u)− g(v)
8: if u either is being or already was expanded by another search then
9: Merge our execution with u’s search.

10: if The other search also expanded the edge 〈v, u〉 in this round then
11: ε← ε

2

12: for all k ∈ Ṽ : k is incident to an edge in the fringe do
13: g(k)← g(k) + ε /* Update the path-cost */
14: F ← (F \ {e}) ∪ δ({u}) /* Update the fringe with e’s successors */
15: Ṽ ← Ṽ ∪ {u} /* Add u to the final forest */
16: Ẽ← Ẽ ∪ {e} /* Add e to the final forest */

Initialization
Set up the fringe and path-cost functions.Goal-Test Function

Keep on searching until all of the constraints are

satisfied.

Remove Node from Fringe
The fringe is prioritized using a special potential

function heuristic.

Path-Cost Update
Update the open nodes.

Successors
Add successors to the fringe.

Gradient!
This is the potential function that will ensure 2-OPT.

Dual Variables
The path-cost implicitly initializes the dual variables.

Pushing Up the Duals
Implicitly sets yṼ ← yṼ + ε.

Goal-Test Function
If the goal-test function is a proper function, we can

solve many other problems!

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 51

Generalized Distributed
Constrained Forest Algorithm
for Multidirectional Graph Search

1: procedure MULTIDIRECTIONAL-GRAPH-SEARCH(v)
Require: v is the start vertex running this search.
Ensure: H = 〈Ṽ, Ẽ〉 is the resulting forest.

2: Ṽ ← {v}
3: Ẽ← ∅
4: F ← our neighbors /* The fringe of our search */
5: g(v)← 0 for all v ∈ V /* Initialize the path-cost function to 0 */
6: while Our interaction constraints are still unsatisfied do
7: Find an edge e = 〈u, v〉 in the fringe that minimizes ε = w(e)− g(u)− g(v)
8: if u either is being or already was expanded by another search then
9: Merge our execution with u’s search.

10: if The other search also expanded the edge 〈v, u〉 in this round then
11: ε← ε

2

12: for all k ∈ Ṽ : k is incident to an edge in the fringe do
13: g(k)← g(k) + ε /* Update the path-cost */
14: F ← (F \ {e}) ∪ δ({u}) /* Update the fringe with e’s successors */
15: Ṽ ← Ṽ ∪ {u} /* Add u to the final forest */
16: Ẽ← Ẽ ∪ {e} /* Add e to the final forest */

Initialization
Set up the fringe and path-cost functions.

Goal-Test Function
Keep on searching until all of the constraints are

satisfied.

Remove Node from Fringe
The fringe is prioritized using a special potential

function heuristic.

Path-Cost Update
Update the open nodes.

Successors
Add successors to the fringe.

Gradient!
This is the potential function that will ensure 2-OPT.

Dual Variables
The path-cost implicitly initializes the dual variables.

Pushing Up the Duals
Implicitly sets yṼ ← yṼ + ε.

Goal-Test Function
If the goal-test function is a proper function, we can

solve many other problems!

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 51

Generalized Distributed
Constrained Forest Algorithm
for Multidirectional Graph Search

1: procedure MULTIDIRECTIONAL-GRAPH-SEARCH(v)
Require: v is the start vertex running this search.
Ensure: H = 〈Ṽ, Ẽ〉 is the resulting forest.

2: Ṽ ← {v}
3: Ẽ← ∅
4: F ← our neighbors /* The fringe of our search */
5: g(v)← 0 for all v ∈ V /* Initialize the path-cost function to 0 */
6: while Our interaction constraints are still unsatisfied do
7: Find an edge e = 〈u, v〉 in the fringe that minimizes ε = w(e)− g(u)− g(v)
8: if u either is being or already was expanded by another search then
9: Merge our execution with u’s search.

10: if The other search also expanded the edge 〈v, u〉 in this round then
11: ε← ε

2

12: for all k ∈ Ṽ : k is incident to an edge in the fringe do
13: g(k)← g(k) + ε /* Update the path-cost */
14: F ← (F \ {e}) ∪ δ({u}) /* Update the fringe with e’s successors */
15: Ṽ ← Ṽ ∪ {u} /* Add u to the final forest */
16: Ẽ← Ẽ ∪ {e} /* Add e to the final forest */

Initialization
Set up the fringe and path-cost functions.

Goal-Test Function
Keep on searching until all of the constraints are

satisfied.

Remove Node from Fringe
The fringe is prioritized using a special potential

function heuristic.

Path-Cost Update
Update the open nodes.

Successors
Add successors to the fringe.

Gradient!
This is the potential function that will ensure 2-OPT.

Dual Variables
The path-cost implicitly initializes the dual variables.

Pushing Up the Duals
Implicitly sets yṼ ← yṼ + ε.

Goal-Test Function
If the goal-test function is a proper function, we can

solve many other problems!

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 51

Generalized Distributed
Constrained Forest Algorithm
for Multidirectional Graph Search

1: procedure MULTIDIRECTIONAL-GRAPH-SEARCH(v)
Require: v is the start vertex running this search.
Ensure: H = 〈Ṽ, Ẽ〉 is the resulting forest.

2: Ṽ ← {v}
3: Ẽ← ∅
4: F ← our neighbors /* The fringe of our search */
5: g(v)← 0 for all v ∈ V /* Initialize the path-cost function to 0 */
6: while Our interaction constraints are still unsatisfied do
7: Find an edge e = 〈u, v〉 in the fringe that minimizes ε = w(e)− g(u)− g(v)
8: if u either is being or already was expanded by another search then
9: Merge our execution with u’s search.

10: if The other search also expanded the edge 〈v, u〉 in this round then
11: ε← ε

2

12: for all k ∈ Ṽ : k is incident to an edge in the fringe do
13: g(k)← g(k) + ε /* Update the path-cost */
14: F ← (F \ {e}) ∪ δ({u}) /* Update the fringe with e’s successors */
15: Ṽ ← Ṽ ∪ {u} /* Add u to the final forest */
16: Ẽ← Ẽ ∪ {e} /* Add e to the final forest */

Initialization
Set up the fringe and path-cost functions.Goal-Test Function

Keep on searching until all of the constraints are

satisfied.

Remove Node from Fringe
The fringe is prioritized using a special potential

function heuristic.

Path-Cost Update
Update the open nodes.

Successors
Add successors to the fringe.

Gradient!
This is the potential function that will ensure 2-OPT.

Dual Variables
The path-cost implicitly initializes the dual variables.

Pushing Up the Duals
Implicitly sets yṼ ← yṼ + ε.

Goal-Test Function
If the goal-test function is a proper function, we can

solve many other problems!

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 51

Generalized Distributed
Constrained Forest Algorithm
for Multidirectional Graph Search

1: procedure MULTIDIRECTIONAL-GRAPH-SEARCH(v)
Require: v is the start vertex running this search.
Ensure: H = 〈Ṽ, Ẽ〉 is the resulting forest.

2: Ṽ ← {v}
3: Ẽ← ∅
4: F ← our neighbors /* The fringe of our search */
5: g(v)← 0 for all v ∈ V /* Initialize the path-cost function to 0 */
6: while Our interaction constraints are still unsatisfied do
7: Find an edge e = 〈u, v〉 in the fringe that minimizes ε = w(e)− g(u)− g(v)
8: if u either is being or already was expanded by another search then
9: Merge our execution with u’s search.

10: if The other search also expanded the edge 〈v, u〉 in this round then
11: ε← ε

2

12: for all k ∈ Ṽ : k is incident to an edge in the fringe do
13: g(k)← g(k) + ε /* Update the path-cost */
14: F ← (F \ {e}) ∪ δ({u}) /* Update the fringe with e’s successors */
15: Ṽ ← Ṽ ∪ {u} /* Add u to the final forest */
16: Ẽ← Ẽ ∪ {e} /* Add e to the final forest */

Initialization
Set up the fringe and path-cost functions.Goal-Test Function

Keep on searching until all of the constraints are

satisfied.

Remove Node from Fringe
The fringe is prioritized using a special potential

function heuristic.

Path-Cost Update
Update the open nodes.

Successors
Add successors to the fringe.

Gradient!
This is the potential function that will ensure 2-OPT.

Dual Variables
The path-cost implicitly initializes the dual variables.

Pushing Up the Duals
Implicitly sets yṼ ← yṼ + ε.

Goal-Test Function
If the goal-test function is a proper function, we can

solve many other problems!

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 51

Generalized Distributed
Constrained Forest Algorithm
for Multidirectional Graph Search

1: procedure MULTIDIRECTIONAL-GRAPH-SEARCH(v)
Require: v is the start vertex running this search.
Ensure: H = 〈Ṽ, Ẽ〉 is the resulting forest.

2: Ṽ ← {v}
3: Ẽ← ∅
4: F ← our neighbors /* The fringe of our search */
5: g(v)← 0 for all v ∈ V /* Initialize the path-cost function to 0 */
6: while Our interaction constraints are still unsatisfied do
7: Find an edge e = 〈u, v〉 in the fringe that minimizes ε = w(e)− g(u)− g(v)
8: if u either is being or already was expanded by another search then
9: Merge our execution with u’s search.

10: if The other search also expanded the edge 〈v, u〉 in this round then
11: ε← ε

2

12: for all k ∈ Ṽ : k is incident to an edge in the fringe do
13: g(k)← g(k) + ε /* Update the path-cost */
14: F ← (F \ {e}) ∪ δ({u}) /* Update the fringe with e’s successors */
15: Ṽ ← Ṽ ∪ {u} /* Add u to the final forest */
16: Ẽ← Ẽ ∪ {e} /* Add e to the final forest */

Initialization
Set up the fringe and path-cost functions.Goal-Test Function

Keep on searching until all of the constraints are

satisfied.

Remove Node from Fringe
The fringe is prioritized using a special potential

function heuristic.

Path-Cost Update
Update the open nodes.

Successors
Add successors to the fringe.

Gradient!
This is the potential function that will ensure 2-OPT.

Dual Variables
The path-cost implicitly initializes the dual variables.

Pushing Up the Duals
Implicitly sets yṼ ← yṼ + ε.

Goal-Test Function
If the goal-test function is a proper function, we can

solve many other problems!

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 51

Generalized Distributed
Constrained Forest Algorithm
for Multidirectional Graph Search

1: procedure MULTIDIRECTIONAL-GRAPH-SEARCH(v)
Require: v is the start vertex running this search.
Ensure: H = 〈Ṽ, Ẽ〉 is the resulting forest.

2: Ṽ ← {v}
3: Ẽ← ∅
4: F ← our neighbors /* The fringe of our search */
5: g(v)← 0 for all v ∈ V /* Initialize the path-cost function to 0 */
6: while Our interaction constraints are still unsatisfied do
7: Find an edge e = 〈u, v〉 in the fringe that minimizes ε = w(e)− g(u)− g(v)
8: if u either is being or already was expanded by another search then
9: Merge our execution with u’s search.

10: if The other search also expanded the edge 〈v, u〉 in this round then
11: ε← ε

2

12: for all k ∈ Ṽ : k is incident to an edge in the fringe do
13: g(k)← g(k) + ε /* Update the path-cost */
14: F ← (F \ {e}) ∪ δ({u}) /* Update the fringe with e’s successors */
15: Ṽ ← Ṽ ∪ {u} /* Add u to the final forest */
16: Ẽ← Ẽ ∪ {e} /* Add e to the final forest */

Initialization
Set up the fringe and path-cost functions.Goal-Test Function

Keep on searching until all of the constraints are

satisfied.

Remove Node from Fringe
The fringe is prioritized using a special potential

function heuristic.

Path-Cost Update
Update the open nodes.

Successors
Add successors to the fringe.

Gradient!
This is the potential function that will ensure 2-OPT.

Dual Variables
The path-cost implicitly initializes the dual variables.

Pushing Up the Duals
Implicitly sets yṼ ← yṼ + ε.

Goal-Test Function
If the goal-test function is a proper function, we can

solve many other problems!

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 51

Generalized Distributed
Constrained Forest Algorithm
for Multidirectional Graph Search

1: procedure MULTIDIRECTIONAL-GRAPH-SEARCH(v)
Require: v is the start vertex running this search.
Ensure: H = 〈Ṽ, Ẽ〉 is the resulting forest.

2: Ṽ ← {v}
3: Ẽ← ∅
4: F ← our neighbors /* The fringe of our search */
5: g(v)← 0 for all v ∈ V /* Initialize the path-cost function to 0 */
6: while Our interaction constraints are still unsatisfied do
7: Find an edge e = 〈u, v〉 in the fringe that minimizes ε = w(e)− g(u)− g(v)
8: if u either is being or already was expanded by another search then
9: Merge our execution with u’s search.

10: if The other search also expanded the edge 〈v, u〉 in this round then
11: ε← ε

2

12: for all k ∈ Ṽ : k is incident to an edge in the fringe do
13: g(k)← g(k) + ε /* Update the path-cost */
14: F ← (F \ {e}) ∪ δ({u}) /* Update the fringe with e’s successors */
15: Ṽ ← Ṽ ∪ {u} /* Add u to the final forest */
16: Ẽ← Ẽ ∪ {e} /* Add e to the final forest */

Initialization
Set up the fringe and path-cost functions.Goal-Test Function

Keep on searching until all of the constraints are

satisfied.

Remove Node from Fringe
The fringe is prioritized using a special potential

function heuristic.

Path-Cost Update
Update the open nodes.

Successors
Add successors to the fringe.

Gradient!
This is the potential function that will ensure 2-OPT.

Dual Variables
The path-cost implicitly initializes the dual variables.

Pushing Up the Duals
Implicitly sets yṼ ← yṼ + ε.

Goal-Test Function
If the goal-test function is a proper function, we can

solve many other problems!

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 51

Generalized Distributed
Constrained Forest Algorithm
for Multidirectional Graph Search

1: procedure MULTIDIRECTIONAL-GRAPH-SEARCH(v)
Require: v is the start vertex running this search.
Ensure: H = 〈Ṽ, Ẽ〉 is the resulting forest.

2: Ṽ ← {v}
3: Ẽ← ∅
4: F ← our neighbors /* The fringe of our search */
5: g(v)← 0 for all v ∈ V /* Initialize the path-cost function to 0 */
6: while Our interaction constraints are still unsatisfied do
7: Find an edge e = 〈u, v〉 in the fringe that minimizes ε = w(e)− g(u)− g(v)
8: if u either is being or already was expanded by another search then
9: Merge our execution with u’s search.

10: if The other search also expanded the edge 〈v, u〉 in this round then
11: ε← ε

2

12: for all k ∈ Ṽ : k is incident to an edge in the fringe do
13: g(k)← g(k) + ε /* Update the path-cost */
14: F ← (F \ {e}) ∪ δ({u}) /* Update the fringe with e’s successors */
15: Ṽ ← Ṽ ∪ {u} /* Add u to the final forest */
16: Ẽ← Ẽ ∪ {e} /* Add e to the final forest */

Initialization
Set up the fringe and path-cost functions.Goal-Test Function

Keep on searching until all of the constraints are

satisfied.

Remove Node from Fringe
The fringe is prioritized using a special potential

function heuristic.

Path-Cost Update
Update the open nodes.

Successors
Add successors to the fringe.

Gradient!
This is the potential function that will ensure 2-OPT.

Dual Variables
The path-cost implicitly initializes the dual variables.

Pushing Up the Duals
Implicitly sets yṼ ← yṼ + ε.

Goal-Test Function
If the goal-test function is a proper function, we can

solve many other problems!

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 51

Technical Sketch

d1

d2

d3

d4

v1

v2

v3

v4

0

0

0

0

1 1

1

2

Assumptions
I No knowledge of global

state.
I Only need to know one’s

neighbors.
I Guaranteed message

delivery, but arbitrary
latency.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 52

Technical Sketch

d1

d2

d3

d4

v1

v2

v3

v4

0

0

0

0

1 1

1

2

Assumptions
I No knowledge of global

state.
I Only need to know one’s

neighbors.
I Guaranteed message

delivery, but arbitrary
latency.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 52

Dynamic/Streaming Problems
1. In certain well-defined cases, after a modification event the

algorithm can be continued and is still guaranteed to
produce a 2-optimal solution.

I If the weights of all of v’s
incident edges are greater
than or equal to the slack
of all of their neighboring
vertices’ fringe nodes:

v

u1

u2

..
.

u3

. . .

uk. . .

i1

j1

i2 j2

i3

j3

. . .

. .
.

. .
.

2. In all other cases, we can backtrack to the most recent
round during which the conditions allowed for the dynamic
modification.

3. Worst case: backtrack to the start, which is only O(n)
rounds.

4. Backtracking only increases memory/computation
polynomially.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 53

Example Domains
Corporations

C
os

ts
/F

ee
s

La
nd

m
ar

ks

H
iri

ng

Lo
gi

st
ic

s
A

dv
er

tis
in

g×
M

an
ag

em
en

t

Robotic Teaming Sensor Networks

Border

Target

Car
c2

c1

c3

c4

Service Composition DCR
Agent 1

Agent 2 Agent 3

A
{R, G, B}

B
{R, G, B}

C
{R, G, B}

D
{R, G, B}

6=

6= 6=

6=

6=6=

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 55

Robot Teaming

a2

a3

a1

a4

I Group of mobile robots each equipped with a wireless
access point.
I Objective of the robots: maximally cover an area with the

wireless network.
I In order to save power: Choose a maximum subset of

robots that can lower their transmit power while still
retaining coverage.

E. Sultanik, A. Shokoufandeh, and W. Regli
Dominating Sets of Agents in Visibility Graphs: Distributed Algorithms for Art
Gallery Problems.
In Proceedings of the Ninth International Conference on Autonomous Agents
and Multiagent Systems, May 2010.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 56

Art Gallery Problems
Example
Find the minimum number of guards required to observe the
interior of a polygonal area.

Variants
I Guards in the interior.
I Treasures.
I Non-uniform cost for stationing a guard.
I NP-COMPLETE.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 57

Equiv. as a Connectivity Problem

Augment each vertex with a special guard vertex (“ ”).

1 1

1 1

1 1

1

1

1

0

0

0

0

0

0

00

0

0

0

0

0 0

0

0

0

Connectivity Problem: Find an acyclic subgraph such that:
1. every is connected to a by a path of length ≤ 2; and
2. the subgraph’s weight is minimized.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 58

Equiv. as a Connectivity Problem

Weight the new edges with the cost of guarding from there.

1 1

1 1

1 1

1

1

1

0

0

0

0

0

0

00

0

0

0

0

0 0

0

0

0

Connectivity Problem: Find an acyclic subgraph such that:
1. every is connected to a by a path of length ≤ 2; and
2. the subgraph’s weight is minimized.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 58

Equiv. as a Connectivity Problem

Weight the original visibility graph edges 0.

1 1

1 1

1 1

1

1

1

0

0

0

0

0

0

00

0

0

0

0

0 0

0

0

0

Connectivity Problem: Find an acyclic subgraph such that:
1. every is connected to a by a path of length ≤ 2; and
2. the subgraph’s weight is minimized.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 58

Equiv. as a Connectivity Problem

Weight the original visibility graph edges 0.

1 1

1 1

1 1

1

1

1

0

0

0

0

0

0

00

0

0

0

0

0 0

0

0

0

Connectivity Problem: Find an acyclic subgraph such that:
1. every is connected to a by a path of length ≤ 2; and
2. the subgraph’s weight is minimized.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 58

Technical Sketch

Round 0: All Vertices are Unguarded (“ ”)

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 59

Technical Sketch

Round 1: Unguarded components add cut-edge of
min. potential.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 59

Technical Sketch

Round 2: Unguarded components add cut-edge of
min. potential.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 59

Technical Sketch

Round 3: Unguarded components add cut-edge of
min. potential.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 59

Technical Sketch

Round 4: Unguarded components add cut-edge of
min. potential.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 59

Technical Sketch

Round 5: Unguarded components add cut-edge of
min. potential.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 59

Technical Sketch

Round 6: All nodes are guarded, so we terminate.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 59

Technical Sketch

Round 6: All nodes are guarded, so we terminate.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 59

Conclusions

I Certain streams data processing problems can be cast as
a dynamic/distributed multiagent optimization problem.

I Measuring the performance of distributed algorithms is
hard.

I In most cases, we want O(n) communication rounds.
I Distributed constraint reasoning is a powerful model that is

useful for many problems.
I Approximation algorithms are often useful and sometimes

necessary.
I The Primal-Dual Schema is a very powerful tool for

approximation.

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 61

Thank you for your time and attention.

Questions?

Evan A. Sultanik
Evan.Sultanik@jhuapl.edu
http://www.sultanik.com/

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 62

Evan.Sultanik@jhuapl.edu
http://www.sultanik.com/

	Introduction
	What is Combinatorial Optimization?
	Relevance to Streaming
	Distributed Optimization

	Distributed Constraint Reasoning (DCR)
	Constraint Reasoning Algorithms
	Distributed Algorithms
	Dynamic (``Streaming'') DCR

	Approximation Algorithms
	Generalizing the Schema
	Multidirectional Graph Search
	Examples

	Conclusions

