Distributed Combinatorial Optimization An Introduction

Evan A. Sultanik Evan.Sultanik@jhuapl.edu

APL

E. A. Sultanik The Johns Happins University APPLIED PHYSICS LABORATORS

Outline

Introduction

What is Combinatorial Optimization? Relevance to Streaming Distributed Optimization

Distributed Constraint Reasoning (DCR)

Constraint Reasoning Algorithms Distributed Algorithms Dynamic ("Streaming") DCR

Approximation Algorithms

Generalizing the Schema Multidirectional Graph Search Examples

Conclusions

E. A. Sultanik The Johns Hopkins Union

Δυ

Outline

Introduction What is Combinatorial Optimization? Relevance to Streaming Distributed Optimization	
Distr C D D D D D D D D D D D D D D D D D D	
Generalizing the Schema Multidirectional Graph Search Examples	
Conclusions	APL

Combinatorial Optimization

Definition

Combinatorial Optimization is the process of finding an optimal subset of objects from within a finite set of objects.

Example: the *Knapsack Problem*

Given a finite set of *n* objects each with a value v_1, v_2, \ldots, v_n and a weight w_1, w_2, \ldots, w_n , the knapsack problem asks to find a subset of the objects whose combined weight does not exceed a given maximum, w_{max} , and whose combined value is maximized:

haximize
$$\sum_{i=1}^{n} v_i x_i$$

bject to:
 $\sum_{j=1}^{n} w_j x_j \le w_{\max},$
 $x_k \in \{0, 1\}, \qquad k = 1$.

where the chosen set of objects is $S = \{i \in \{1, 2, ..., n\} : x_i = 1\}.$

m

su

E. A. Sultanik The Johns Heplins University APPLIED PHYSICS LABORATORY ..n.

Given a finite set of *n* objects each with a value v_1, v_2, \ldots, v_n and a weight w_1, w_2, \ldots, w_n , the knapsack problem asks to find a subset of the objects whose combined weight does not exceed a given maximum, w_{max} , and whose combined value is maximized:

maximize
$$\sum_{i=1}^{n} v_i x_i$$

subject to:
 $\sum_{j=1}^{n} w_j x_j \le w_{\max},$
 $x_k \in \{0, 1\}, \qquad k = 1 \dots n,$
the chosen set of objects is

$$S = \{i \in \{1, 2, \dots, n\} : x_i = 1\}$$

E. A. Sultanik The Jokes Happing University APPLIED PHYSICS LABORATORY

where

Given a finite set of *n* objects each with a value v_1, v_2, \ldots, v_n and a weight w_1, w_2, \ldots, w_n , the knapsack problem asks to find a subset of the objects whose combined weight does not exceed a given maximum, w_{max} , and whose combined value is maximized:

Given a finite set of *n* objects each with a value v_1, v_2, \ldots, v_n and a weight w_1, w_2, \ldots, w_n , the knapsack problem asks to find a subset of the objects whose combined weight does not exceed a given maximum, w_{max} , and whose combined value is maximized:

Example

maximize x_1 \$2 + x_2 \$4 + x_3 \$10 + x_4 \$1 + x_5 \$2 subject to:

$$1x_1 + 12x_2 + 4x_3 + 1x_4 + 2x_5 \le 8 \text{ kg},$$

 $x_k \in \{0, 1\},$ $k = 1 \dots n.$

Relevance to Streaming?

Usually these problems are solved once. But what if the problem itself changes over time?

There is a stream of modification events to which we must react and re-optimize.

E. A. Sultanik The Johns Highlins University

maximize
$$x_1$$
\$2 + x_2 \$4 + x_3 \$10 + x_4 \$1 + x_5 \$2
subject to:
 $1x_1 + 12x_2 + 4x_3 + 1x_4 + 2x_5 \le 8 \text{ kg},$

$$x_k \in \{0, 1\},$$
 $k = 1...n.$

Optimal Solution

$$x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 1, x_5 = 1$$
 (Payoff = \$15)

E. A. Sultanik The Jokes Happing University APPLIED PHYSICS LABORATORY

maximize
$$x_1$$
\$1 + x_2 \$4 + x_3 \$10 + x_4 \$1 + x_5 \$2
subject to:
 $1x_1 + 12x_2 + 4x_3 + 1x_4 + 2x_5 \le 8 \text{ kg},$
 $x_k \in \{0, 1\},$ $k = 1 \dots n.$

Optimal Solution

$$x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 1, x_5 = 1$$
 (Payoff = \$14)

 E. A. Sultanik The Media Manager
 Distributed Combinatorial Optimization
 October 11, 2011
 10

maximize
$$x_1$$
\$1 + x_2 \$4 + x_3 \$10 + x_4 \$1 + x_5 \$2
subject to:
$$2x_1 + 12x_2 + 4x_3 + 1x_4 + 2x_5 \le 8 \text{ kg},$$
$$x_k \in \{0, 1\}, \qquad \qquad k = 1 \dots n.$$

Optimal Solution

S

$$x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 1$$
 (Payoff = \$13)

Events (Time
$$\longrightarrow$$
)
 $\$2 \mapsto \1 $1 \text{ kg} \mapsto 2 \text{ kg}$

maximize
$$x_1$$
\$1 + x_2 \$6 + x_3 \$10 + x_4 \$1 + x_5 \$2
subject to:
 $2x_1 + 12x_2 + 4x_3 + 1x_4 + 2x_5 \le 8 \text{ kg},$
 $x_k \in \{0, 1\},$ $k = 1 \dots n.$

Optimal Solution

S

$$x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 1$$
 (Payoff = \$13)

Events (Time \rightarrow)

$$(\$2 \mapsto \$1) 1 \, \mathsf{kg} \mapsto 2 \, \mathsf{kg} \$$

maximize
$$x_1$$
\$1 + x_2 \$6 + x_3 \$10 + x_4 \$1 + x_5 \$2
subject to:
 $2x_1 + 15x_2 + 4x_3 + 1x_4 + 2x_5 \le 8 \text{ kg},$
 $x_k \in \{0, 1\},$ $k = 1 \dots n.$

Optimal Solution

$$x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 1$$
 (Payoff = \$13)

Events (Time \rightarrow)

$$\$2 \mapsto \$1 1 \text{ kg} \mapsto 2 \text{ kg} \$4 \mapsto \$6 12 \text{ kg} \mapsto 15 \text{ kg}$$

maximize
$$x_1$$
\$1 + x_2 \$6 + x_3 \$10 + x_4 \$1 + x_5 \$2
subject to:
 $2x_1 + 15x_2 + 4x_3 + 1x_4 + 2x_5 \le 20 \text{ kg},$
 $x_k \in \{0, 1\},$ $k = 1 \dots n.$

Optimal Solution

9

$$x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 1, x_5 = 0$$
 (Payoff = \$17)

Events (Time
$$\longrightarrow$$
)
 $\$2 \mapsto \1 $1 \text{ kg} \mapsto 2 \text{ kg}$ $\$4 \mapsto \6 $12 \text{ kg} \mapsto 15 \text{ kg}$ $\clubsuit = 20 \text{ kg}$

Distributed Optimization

A set of agents distributedly decide which objects to choose.

Distributed Optimization

Each agent only knows about a subset of the objects.

E. A. Sultanik The Jokes Happing University APPLIED PHYSICS LABORATORY

Distributed Optimization

They will have to negotiate to solve the problem.

Why Distribute?

- Privacy No single agent knows the entire world-state. **Example:** *Meeting Scheduling*
- Locality The problem is naturally distributed; extra effort is required to centralize the world-state for a centralized optimization algorithm. Example: Sensor Networks
- Efficiency Each agent is, in effect, its own processor, so we might achieve a speedup from parallelism. **Example:** *Cloud Computing*

Efficient Sequential Algorithms

- Moore's Law: processor speed doubles about every two years.
- ► If an algorithm has computational complexity O(n^c) and current hardware can only solve problems of size n, then we will only have to wait O(log n) years¹ until hardware can solve a problem of size n + 1.
- Conclusion: polynomial runtime is desirable in sequential algorithms!

APL

¹More precisely, about $c \times \log_2\left(\frac{n+1}{n}\right)$ years.

Conclusion

In distributed algorithms, there is no equivalent to Moore's law! Number of different metrics to optimize (*e.g.*, rounds, messages, latency, & *c.*).

When to distribute?

- the problem itself is naturally distributed;
- local properties of the problem seem to allow for speedups from distributed processing;
- In certain environments, such as sensor networks, hardware restrictions might necessitate decentralization in order to save memory/power/ℰc.;
- privacy (no central node can be trusted); and
- ultimately need O(n) messaging rounds.

Constraint Reasoning

(a.k.a. "Constraint Programming")

Idea: Model problems as systems of constraints.

- Set of *variables*: $V = \{v_1, v_2, ..., v_n\}$
- ► Each variable has an associated *domain* from which it can be assigned a value: D = {D₁, D₂,..., D_n}.
- There are a set of constraints that dictate costs for certain variable assignments:

$$f: \bigcup_{S\in 2^V} \prod_{v_i\in S} (\{v_i\} \times D_i) \to \mathbb{R}.$$

Δυ

Example: Graph Coloring

Graph $G = \langle V, E \rangle$:

$$V = \{v_A, v_B, v_C, v_D\}$$
$$D_A = D_B = D_C = \{\blacksquare, \blacksquare, \blacksquare\}$$
$$(\langle v_i, d_k \rangle, \langle v_j, d_\ell \rangle) \mapsto 1 \quad \text{if} \quad \langle v_i, v_j \rangle \in E \land d_k = d_\ell.$$
(two neighboring vertices a

(incur a cost of 1)

(two neighboring vertices are assigned the same color)

Goal

Find a mapping from variables to domains that minimizes f.

Consider this graph coloring problem.

Note that E and F have unary constraints dictating their colors.

Perform a DFS traversal of the constraint graph...

In reverse order, remove inconsistent entries in the domains.

Working in order, choose values remaining in the domains.

This algorithm runs in $O(|\mathcal{D}|^2|V|)$ time.

A Common Approximation:

Remove constraints until the constraint graph becomes acyclic!

E. A. Sultanik The Johns Hophins University

Distributed Constraint Reasoning

Idea: Model inherently distributed problems as systems of constraints.

Definition

An "**Agent**" is a situated computational process with one or more of the following properties: *autonomy*, *proactivity* and *interactivity*.

E. A. Sultanik The Johns Highlins Universit APPLIED PHYSICS LABORATOR

Distributed Constraint Reasoning Variables are assigned by agents:

Idea: Mo

with one or more of the following properties: autonomy, proactivity and interactivity.

E. A. Sultanik The Johns Hophins University

Algorithms: DisCSP

Early DCR research focused on DisCSP:

- Asynchronous Backtracking (1992)
- Asynchronous Weak-Commitment (1994)
- ► Distributed Breakout (1995) ← local search
- Distributed Forward Checking (2000)
- Idea: Perform a greedy, local search.
- Very fast!
- No guarantee of optimality (can get stuck in local minima).

Example: Graph Coloring

W. Zhang, G. Wang, and L. Wittenburg

Distributed Stochastic Search for Constraint Satisfaction and Optimization: Parallelism, Phase Transitions and Performance

In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002.

E. A. Sultanik The Johns Hephins University

Distributed Combinatorial Optimization

- Idea: Perform a greedy, local search.
- Very fast!
- No guarantee of optimality (can get stuck in local minima).

Each agent controls a vertex.

W. Zhang, G. Wang, and L. Wittenburg

Distributed Stochastic Search for Constraint Satisfaction and Optimization: Parallelism, Phase Transitions and Performance

In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002.

E. A. Sultanik The Johns Hephins University APPLIED PHYSICS LABORATORS

Distributed Combinatorial Optimization

4

- Idea: Perform a greedy, local search.
- Very fast!
- No guarantee of optimality (can get stuck in local minima).

Agents randomly choose a value from their domain...

W. Zhang, G. Wang, and L. Wittenburg

Distributed Stochastic Search for Constraint Satisfaction and Optimization: Parallelism, Phase Transitions and Performance

In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002.

E. A. Sultanik The Johns Hephins University APPLIED PHYSICS LABORATORS

Distributed Combinatorial Optimization

Δν

- Idea: Perform a greedy, local search.
- Very fast!
- No guarantee of optimality (can get stuck in local minima).

... then broadcast their choices to neighbors.

W. Zhang, G. Wang, and L. Wittenburg

Distributed Stochastic Search for Constraint Satisfaction and Optimization: Parallelism, Phase Transitions and Performance

In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002.

E. A. Sultanik The Johns Hopkins University APPLIED PHYSICS LABORATORS

- Idea: Perform a greedy, local search.
- Very fast!
- No guarantee of optimality (can get stuck in local minima).

If conflict, choose another value given neighbors' choices.

W. Zhang, G. Wang, and L. Wittenburg

Distributed Stochastic Search for Constraint Satisfaction and Optimization: Parallelism, Phase Transitions and Performance

In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002.

E. A. Sultanik The Johns Hephins University APPLIED PHYSICS LABORATORS

- Idea: Perform a greedy, local search.
- Very fast!
- No guarantee of optimality (can get stuck in local minima).

Re-broadcast to neighbors.

W. Zhang, G. Wang, and L. Wittenburg

Distributed Stochastic Search for Constraint Satisfaction and Optimization: Parallelism, Phase Transitions and Performance

In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002.

E. A. Sultanik The Johns Hophins Universit

- Idea: Perform a greedy, local search.
- Very fast!
- No guarantee of optimality (can get stuck in local minima).

Resolve conflicts.

W. Zhang, G. Wang, and L. Wittenburg

Distributed Stochastic Search for Constraint Satisfaction and Optimization: Parallelism, Phase Transitions and Performance

In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002

E. A. Sultanik The Johns Hephins University

- Idea: Perform a greedy, local search.
- Very fast!
- No guarantee of optimality (can get stuck in local minima).

Re-broadcast to neighbors.

W. Zhang, G. Wang, and L. Wittenburg

Distributed Stochastic Search for Constraint Satisfaction and Optimization: Parallelism, Phase Transitions and Performance

In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002.

E. A. Sultanik The Johns Hephins University APPLIED PHYSICS LABORATORS

- Idea: Perform a greedy, local search.
- Very fast!
- No guarantee of optimality (can get stuck in local minima).

Resolve conflicts.

W. Zhang, G. Wang, and L. Wittenburg

Distributed Stochastic Search for Constraint Satisfaction and Optimization: Parallelism, Phase Transitions and Performance

In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002.

E. A. Sultanik The Johns Hephins University

Provably Optimal DCOP Algorithms

Idea: Maintain a structure (like a spanning tree) to organize the problem.

- parallel asynchronous exploration of disjoint subproblems, reminiscent of iterative A* search (ADOPT, 2003);
- incremental partial centralization (OptAPO, 2004);
- dynamic programming (DPOP, 2006); and
- distributed branch-and-bound, both synchronous (NCBB, 2006) and asynchronous (BnB-ADOPT, 2007);
- hybrid additionally using local search (ADOPT-ing, 2007).

Dynamic (i.e., Streaming) DCR

- DSA: Every time a modification event occurs, simply re-resolve conflicts!
- Pseudotree-Based Algorithms: Need a method to dynamically maintain a depth-first spanning tree (*e.g.*, Superstabilizing DFS [Collin & Dolev, 1994] or Mobed [Sultanik, *et al.*, 2010]).
- Alternative: Use an *adapter* that automatically resets the algorithm whenever an event occurs that invalidates the current state.

Dynamic (*i.e.*, Streaming) DCOPs

General Approximation Schema

E. A. Sultanik The Johns Hapkins University

The Primal-Dual Formulation

For any linear program there is a dual linear program:

$$\begin{array}{rcl} \max & c^t x & \min & b^t y \\ \text{s.t.} & Ax \ge b \iff & \text{s.t.} & A^t y \le c \\ & x \ge 0 & y \le 0 \end{array}$$

APL

The Steiner Forest Problem

Objective: Find a minimum weight forest (*e.g.*, ___) that connects all nodes to each other, possibly utilizing \bigcirc nodes.

E. A. Sultanik The Johns Happins University Dis

4

Whether or not an edge *e* will be in the forest: $x_e \in \{0, 1\}$.

$$\begin{split} \min \ & \sum_{e \in E} w(e) \mathbf{x}_{e} \\ \text{s.t.} \ & \sum_{e \in \delta(S)} \mathbf{x}_{e} \geq f(S), \quad \forall S \subset V : S \neq \emptyset \\ & \mathbf{x}_{e} \geq 0, \qquad \qquad \forall e \in E, \end{split}$$

$$\max \sum_{S \subset V} f(S) y_S$$

s.t.
$$\sum_{S: e \in \delta(S)} y_S \le w_e, \qquad \forall e \in E$$
$$y_S \ge 0, \qquad \forall S \subset V : S \neq \emptyset.$$

M. Aggarwal and N. Garg A Scaling Technique for Better Network Design. In Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, 2001.

E. A. Sultanik The Johns Hopkins University

The weight of edge e: w(e).

$$\min \sum_{e \in E} w(e) x_e$$

s.t.
$$\sum_{e \in \delta(S)} x_e \ge f(S), \quad \forall S \subset V : S \neq \emptyset$$
$$x_e \ge 0, \qquad \forall e \in E,$$

$$\max \sum_{S \subset V} f(S) y_S$$

s.t.
$$\sum_{S: e \in \delta(S)} y_S \le w_e, \qquad \forall e \in E$$
$$y_S \ge 0, \qquad \forall S \subset V : S \neq \emptyset.$$

M. Aggarwal and N. Garg A Scaling Technique for Better Network Design. In Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, 2001.

E. A. Sultanik The Johns Hophins University APPLIED PHYSICS LABORATORY

$$f(S) = 1 \text{ iff } \emptyset \neq S \cap \{ \bullet, \bullet, \bullet \} \neq \{ \bullet, \bullet, \bullet \}$$

$$\min \sum_{e \in E} w(e) x_e$$
s.t.
$$\sum_{e \in \delta(S)} x_e \ge f(S), \quad \forall S \subset V : S \neq \emptyset$$

$$x_e \ge 0, \qquad \forall e \in E,$$

$$\max \sum_{S \subset V} f(S) y_S$$

s.t.
$$\sum_{S: e \in \delta(S)} y_S \le w_e, \qquad \forall e \in E$$
$$y_S \ge 0, \qquad \forall S \subset V : S \neq \emptyset.$$

M. Aggarwal and N. Garg A Scaling Technique for Better Network Design. In Proceedings of the Fifth Annual ACM-SIAM Symposium on Discreter Algorithms, 2001.

E. A. Sultanik The Johns Hophins University APPLIED PHYSICS LABORATORY

Each variable in the primal becomes a constraint in the dual

3 M. Aggarwal and N. Garg A Scaling Technique for Better Network Design. Annual ACM-SIAM Symposium on Discrete Algorithms, 2001.

E. A. Sultanik The Johns Happing University

$$\begin{array}{l} \min \sum_{e \in E} w(e) x_e \\ \text{s.t.} \sum_{e \in \delta(S)} x_e \geq f(S), \quad \forall S \subset V : S \neq \emptyset \\ x_e \geq 0, \\ \max \sum_{S \subset V} f(S) y_S \\ \text{s.t.} \sum_{S:e \in \delta(S)} y_S \leq w_e, \quad \forall e \in E \\ y_S \geq 0, \quad \forall S \subset V : S \neq \emptyset. \end{array}$$

E. A. Sultanik The Johns Hophins University APPLIED PHYSICS LABORATORY

This is a mechanical process!

$$\begin{split} \min \ & \sum_{e \in E} w(e) x_e \\ \text{s.t.} \ & \sum_{e \in \delta(S)} x_e \geq f(S), \quad \forall S \subset V : S \neq \emptyset \\ & x_e \geq 0, \qquad \qquad \forall e \in E, \end{split}$$

$$\max \sum_{S \subset V} f(S) y_S$$

s.t.
$$\sum_{S: e \in \delta(S)} y_S \le w_e, \qquad \forall e \in E$$
$$y_S \ge 0, \qquad \forall S \subset V : S \neq \emptyset.$$

M. Aggarwal and N. Garg A Scaling Technique for Better Network Design. In Proceedings of the Fifth Annual ACM-SIAM Symposium on Discreter Algorithms, 2001.

E. A. Sultanik The Johns Hopkins University

Note: *looks like* exponential constraints!

E. A. Sultanik The Johns Hopkins University

Properties of the Schema

TERM	Meaning
OP	Optimization Problem
IP	Integer Programming Formulation of OP
LP	Continuous Optimization Relaxation of IP
D	The Dual of LP
$Z_{LP}^*/Z_D^*/Z_{IP}^*$	Cost of the Optimal Solution to $\mathrm{LP}/\mathrm{D}/\mathrm{IP}$

NAME	PROPERTY	
Weak Duality	The cost of any feasible solution	
	to D is a lower bound on the so-	
	lution to LP.	
Strong Duality	$Z_D^* = Z_{LP}^* \le Z_{IP}^*$	
Complementary Slackness	A primal variable can be posi-	
	tive iff its associated dual con-	
	straint is tight.	
	HP HP	

Algorithmic Form of the Primal-Dual Schema

- 1: procedure PRIMAL-DUAL(IP)
- 2: Let (CO) be the continuous optimization relaxation of (IP).
- 3: Let (D) be the dual to (CO).
- 4: Initialize vectors x = 0 and y = 0 which are, respectively, the solutions for (CO) and (D). /* Note that y will initially be dual feasible, but x will not necessarily be primal feasible. */
- 5: while *x* is primal infeasible do
- 6: While maintaining dual feasibility, deterministically increase the dual values y_i until one dual constraint becomes tight (*i.e.*, that variable cannot be increased any more without breaking a dual constraint).
- 7: For a subset of the tight dual constraints, increase the primal variable corresponding to them by an integral amount.
- 8: The cost of the dual solution is used as a lower bound on *OPT*.

V. Vazirani Approximation Algorithms. Springer-Verlag, Berlin, 2001.

AVI

The (Sequential) Algorithm

The (Sequential) Algorithm

Generalizing the Indicator Function

$$\min \sum_{e \in E} w(e)x_e \qquad \max \sum_{S \subset V} f(S)y_S$$
s.t.
$$\sum_{e \in \delta(S)} x_e \ge f(S), \quad \forall S \subset V : S \neq \emptyset \qquad s.t. \sum_{S:e \in \delta(S)} y_S \le w_e, \qquad \forall e \in E$$

$$x_e \ge 0, \qquad \forall e \in E, \qquad y_S \ge 0, \qquad \forall S \subset V : S \neq \emptyset.$$

Steiner Forest: f(S) = 1 iff $\emptyset \neq S \cap \{0, 2, 0\} \neq \{0, 2, 0\}$

Wouldn't it be *totally radical* if we could solve a seemingly completely different problem simply by tweaking the definition of *f*?*

* May not be a direct quote.

M. Goemans and D. Williamson A General Approximation Technique for Constrained Forest Problems. *SIAM Journal on Computing*, **24**:296–317, 1995.

Constrained Forest Problems

$\min \sum_{e \in E} w(e) x_e$	max	$\sum_{S \subset V} f(S) y_S$
s.t. $\sum_{e \in \delta(S)} x_e \ge f(S)$,	$\forall S \subset V : S \neq \emptyset \qquad \qquad \text{s.t.}$	$\sum_{S:e \in \delta(S)} y_S \le w_e, \qquad \forall e \in E$
$x_e \ge 0,$ Name	$\forall e \in E,$ y, Problem	$\forall S \geq 0, \qquad \forall S \subset V : S \neq \emptyset.$ $ f(S) = 1 \text{ iff } \dots$
Minimum-weight per- fect matching	Find a minimum-cost set of non-adjacent edges that cover all vertices.	<i>S</i> is odd.
<i>T-</i> join	Given an even subset T of vertices, find a minimum-cost set of edges that has odd degree at vertices in T and even degree at vertices not in T .	$ S \cap T $ is odd.
Minimum spanning tree/forest	Find a minimum weight forest that maxi- mizes connectivity between vertices.	$\exists u \in S, v \notin S : u \rightsquigarrow v \in G$
Generalized Steiner tree	Find a minimum-cost forest that connects all vertices in T_i for $i = 1,, p$.	$\exists i \in \{1, \ldots, p\} : \emptyset \neq S \cap T_i \neq T_i.$
Point-to-point connec- tion	Given a set $C = \{c_1, \ldots, c_p\}$ of sources and a set $D = \{d_1, \ldots, d_p\}$ of destinations in a graph $G = \langle V, E \rangle$, find a minimum-cost set <i>F</i> of edges such that each source-destination pair is con- nected in <i>F</i> .	$ S \cap C \neq S \cap D .$
Partitioning (w/triangle inequality)	Find a minimum-cost collection of vertex- disjoint trees, paths, or cycles that cover all vertices.	$S \not\equiv 0 \pmod{k}.$
Location design/routing	Select depots among a subset <i>D</i> of vertices of a graph $G = \langle V, E \rangle$ and cover all vertices in <i>V</i> with a set of cycles, each containing a selected depot, while minimizing the sum of the fixed costs of open-	^{∅ ≠ s ⊆ v} AP
A Sultanik The Johns Hopkins University	Distributed Combinatorial Ontimiza	october 11 2011

42

Proper Functions

A function on the powerset of a set of vertices, $f : 2^V \rightarrow \{0, 1\}$, is said to be *proper* if the following are true:

PROPERTY NAMERULENull $f(\emptyset) = 0$ Symmetry $\forall S \subseteq V : f(S) = f(V - S)$ Disjointness $\forall A, B \subseteq V : (A \cap B = \emptyset)$ $\implies f(A \cup B) \leq \max\{f(A), f(B)\}.$

Proper Functions (Continued)

- ► If *f* is proper then the sequential algorithm will...
 - ...run in polynomial time; and
 - ...produce a solution that is 2-OPT (*i.e.*, the cost will be no more than two times the cost of the optimal solution).
- "Constrained Forest Problems"
- Many constrained forest problems are NP-HARD.
- ▶ Various extensions (*e.g.*, supermodular, well spaced, *&c.*).

Surprise!

The sequential 2-approximation result can be generalized to a large family of functions and efficiently distributed for optimizing over streams.

Scott Aaronson

NP-complete Problems and Physical Reality SIGACT News 36(1):30–52, 2005.

Distributed Combinatorial Optimization

API

E. A. Sultanik The Johns Hipphines University APPLIED PHYSICS LABORATORY

E. A. Sultanik The Johns Hophins University APPLIED PHYSICS LABORATORY

E. A. Sultanik The Johns Hophins University APPLIED PHYSICS LABORATORY

- DFS: Stack
- BFS: Queue
- Best-first: Priority Queue
- A*: Priority Queue with Heuristic

Distributed Combinatorial Optimization

AVI
Bidirectional Search

- Modified GOAL-TEST and an optimal search ~-> guaranteed optimality.
- Speedup from parallelism.
- Question: What if Erdős wants to join the party?

Ч

APL

E. A. Sultanik The Johns Hophins University APPLIED PHYSICS LABORATORY

APL

E. A. Sultanik The Johns Hophins University APPLIED PHYSICS LABORATORY

APL

E. A. Sultanik The Johns Hophins University APPLIED PHYSICS LABORATORY

APL

E. A. Sultanik The Jokes Happing University APPLIED PHYSICS LABORATORY

Challenges

How do we prevent cycles?

- How do we ensure correctness/completeness?
- Optimality?

for Multidirectional Graph Search

1: **procedure** MULTIDIRECTIONAL-GRAPH-SEARCH(v) **Require:** *v* is the start vertex running this search. **Ensure:** $H = \langle \tilde{V}, \tilde{E} \rangle$ is the resulting forest. 2: $\tilde{V} \leftarrow \{v\}$ 3: $\tilde{E} \leftarrow \emptyset$ 4: $F \leftarrow$ our neighbors /* The fringe of our search */ 5: $g(v) \leftarrow 0$ for all $v \in V$ /* Initialize the path-cost function to 0 */ 6: while Our interaction constraints are still unsatisfied do 7: Find an edge $e = \langle u, v \rangle$ in the fringe that minimizes $\varepsilon = w(e) - g(u) - g(v)$ 8: if u either is being or already was expanded by another search then 9: Merge our execution with *u*'s search. 10: if The other search also expanded the edge $\langle v, u \rangle$ in this round **then** 11: $\epsilon \leftarrow \frac{\epsilon}{2}$ 12: for all $k \in \tilde{V}$: k is incident to an edge in the fringe do 13: $g(k) \leftarrow g(k) + \varepsilon$ /* Update the path-cost */ 14: $\begin{array}{l} F \leftarrow (F \setminus \{e\}) \cup \delta(\{u\}) \ / * \ \text{Update the fringe with } e's \ \text{successors } * / \\ \tilde{V} \leftarrow \tilde{V} \cup \{u\} \ / * \ \text{Add} \ u \ \text{to the final forest } * / \end{array}$ 15: 16: $\tilde{E} \leftarrow \tilde{E} \cup \{e\}$ /* Add e to the final forest */

for Multidirectional Gra

Initialization

1:	procedure MULT	Set up the fringe and path-cost functions.
Req	uire: v is the start ve	tex running this search.
Ens	ure: $H = \langle \tilde{V}, \tilde{E} \rangle$ is the	e resulting forest.
2:	$\tilde{V} \leftarrow \{v\}$	
3:	$\tilde{E} \leftarrow \tilde{\emptyset}$	
4:	$F \leftarrow our neighbor$	s / * The fringe of our search */
5:	$g(v) \leftarrow 0$ for all v	$\in V$ /* Initialize the path-cost function to 0 */
6:	while Our interac	tion constraints are still unsatisfied do
7:	Find an edge	$e = \langle u, v \rangle$ in the fringe that minimizes $\varepsilon = w(e) - g(u) - g(v)$
8:	if u either is be	eing or already was expanded by another search then
9:	Merge our	execution with <i>u</i> 's search.
10:	if The othe	r search also expanded the edge $\langle v, u \rangle$ in this round then
11:	$\epsilon \leftarrow \frac{\epsilon}{2}$	
12.	for all $k \in \tilde{V}$.	<i>k</i> is incident to an edge in the fringe do
12.	$a(k) \neq a(k)$	$\frac{1}{2}$ L c $\frac{1}{2}$
10.	$g(\kappa) \leftarrow g(\kappa)$	
14:	$\underset{\sim}{F} \leftarrow (F \setminus \{e\})$	$\cup \delta(\{u\})$ /* Update the fringe with <i>e</i> 's successors */
15:	$V \leftarrow V \cup \{u\}$	/* Add u to the final forest $*/$
16:	$\tilde{E} \leftarrow \tilde{E} \cup \{e\}$	/ * Add e to the final forest * /

for Multidirectional Graph Search

_1:	procedure MULT	Goal-Test Function		
Requ Ensu	ire: v is the star re: $H = \langle \tilde{V}, \tilde{E} \rangle$ i	Keep on searching until all of the constraints are		
2:	$\tilde{V} \leftarrow \{v\}$	satisfied.		
3:	$\tilde{E} \leftarrow \emptyset$			
4:	$F \leftarrow \text{our neigl}$	hbors / * The fringe of our search */		
5:	$g(v) \leftarrow 0$ for a	all $v \in V_{-} / *$ Initialize the path-cost function to 0) */	
6:	while Our inte	eraction constraints are still unsatisfied do		
7:	Find an ec	dge $e = \langle u, v angle$ in the fringe that minimizes $arepsilon = w$	y(e) - g(u) - g(v)	
8:	if <i>u</i> either is being or already was expanded by another search then			
9:	Merge our execution with <i>u</i> 's search.			
10:	if The other search also expanded the edge $\langle v, u \rangle$ in this round then			
11:	$\epsilon \leftarrow \frac{\epsilon}{2}$			
12:	for all $k \in \tilde{V}$: k is incident to an edge in the fringe do			
13:	$g(k) \leftarrow$	$g(k) + \varepsilon$ /* Update the path-cost */		
14:	$F \leftarrow (F \setminus \cdot)$	$\{e\} \cup \delta(\{u\}) / * Update the fringe with e's suc$		
15:	$\tilde{V} \leftarrow \overleftarrow{\tilde{V}} \cup \overleftarrow{V}$	$\{u\}$ /* Add u to the final forest */		
16:	$\tilde{E} \leftarrow \tilde{E} \cup \{$	e} /* Add e to the final forest */		
	, (

for Multidirectional Graph Search

1: proo Require:	cedure MULTIDIRECTIONAL-GRAPH-SEARCH(i) : v is the star Remove Node from Fringe $H = \langle \tilde{Y}, \tilde{E} \rangle$
2: 1	$\widetilde{V} \leftarrow \{v\}$ The fringe is prioritized using a special potential
3: Î	$\tilde{E} \leftarrow \tilde{\emptyset}$ function heuristic.
4: 1	$F \leftarrow \text{our neighbors}$ /* The fringe of our search */
5: g	$g(v) \leftarrow 0$ for all $v \in V$ /* Initialize the path-cost function to 0 */
	while Our interaction constraints are still unsatisfied do
7:	Find an edge $e = \langle u, v \rangle$ in the fringe that minimizes $\varepsilon = w(e) - g(u) - g(v)$
8:	if u either is being or already was expanded by another search then
9:	Merge our execution with u's search.
10:	if The other search also expanded the edge $\langle v, u \rangle$ in this round then
11:	$\epsilon \leftarrow \frac{\epsilon}{2}$
12:	for all $k \in \tilde{V}$: k is incident to an edge in the fringe do
13:	$g(k) \leftarrow g(k) + \varepsilon$ /* Update the path-cost */
14:	$F \leftarrow (F \setminus \{e\}) \cup \delta(\{u\})$ /* Update the fringe with e's successors */
15:	$\tilde{V} \leftarrow \tilde{V} \cup \{u\}$ /* Add <i>u</i> to the final forest */
16:	$\tilde{E} \leftarrow \tilde{E} \cup \{e\}$ /* Add <i>e</i> to the final forest */

for Multidirectional Graph Search

for Multidirectional Graph Search

1: **procedure** MULTIDIRECTIONAL-GRAPH-SEARCH(v) **Require:** *v* is the start vertex running this search. **Ensure:** $H = \langle \tilde{V}, \tilde{E} \rangle$ is the resulting forest. 2: $\tilde{V} \leftarrow \{v\}$ 3: $\tilde{E} \leftarrow \tilde{\emptyset}$ 4: $F \leftarrow$ our neighbors /* The fringe of our search */ 5: $g(v) \leftarrow 0$ for all $v \in V$ /* Initialize the path-cost function to 0 */ 6: while Our interaction constraints are still unsatisfied do 7: Find an edge $e = \langle u, v \rangle$ in the fringe that minimizes $\varepsilon = w(e) - g(u) - g(v)$ 8: if *u* either is being or already was expanded by another search then 9: Merge Successors 10: if The in this round then 11: Add successors to the fringe. 12: for all $k \in V : k$ is incident to an edge in the tringe do 13: $g(k) \leftarrow g(k) + \varepsilon$ /* Update the path-cost 14: $\begin{array}{l} F \leftarrow (F \setminus \{e\}) \cup \delta(\{u\}) \ / * \ \text{Update the fringe with } e's \ \text{successors } * / \\ \tilde{V} \leftarrow \tilde{V} \cup \{u\} \ / * \ \text{Add} \ u \ \text{to the final forest } * / \end{array}$ 15: 16: $\tilde{E} \leftarrow \tilde{E} \cup \{e\}$ /* Add e to the final forest */

E. A. Sultanik The John Highing University

for Multidirectional Graph Search

Gradient!

1: procedure MULTIDIRECTIONAL-GRAPH-SEARCH This is the potential function that will ensure 2-OPT **Require:** *v* is the start vertex running this search. **Ensure:** $H = \langle \tilde{V}, \tilde{E} \rangle$ is the resulting forest. 2: $\tilde{V} \leftarrow \{v\}$ 3: $\tilde{E} \leftarrow \emptyset$ 4: $F \leftarrow$ our neighbors /* The fringe of our search * 5: $g(v) \leftarrow 0$ for all $v \in V$ /* Initialize the path-cost function to 0 */ 6: while Our interaction constraints are still unsatisfied do 7: Find an edge $e = \langle u, v \rangle$ in the fringe that minimizes $\varepsilon = w(e) - g(u) - g(v)$ 8: if u either is being or already was expanded by another search then 9: Merge our execution with *u*'s search. 10: if The other search also expanded the edge $\langle v, u \rangle$ in this round then 11: $\epsilon \leftarrow \frac{\epsilon}{2}$ 12: for all $k \in \tilde{V}$: k is incident to an edge in the fringe do 13: $g(k) \leftarrow g(k) + \varepsilon$ /* Update the path-cost */ 14: $F \leftarrow (F \setminus \{e\}) \cup \delta(\{u\}) / *$ Update the fringe with *e*'s successors * $\tilde{V} \leftarrow \tilde{V} \cup \{u\}$ /* Add *u* to the final forest */ 15: $\tilde{E} \leftarrow \tilde{E} \cup \{e\}$ /* Add e to the final forest */ 16:

Generalized Distributed Dual Variables Forest Algorithm fo The path-cost implicitly initializes the dual variables. 1: procedure MULTIDIRECTIONAL-GRAPH-SEARCH(v) **Require:** *v* is the start vertex running this search. **Ensure:** $H = \langle \tilde{V}, \tilde{E} \rangle$ is the resulting forest. 2: $\tilde{V} \leftarrow \{v\}$ 3: $\tilde{E} \leftarrow \emptyset$ 4: $F \leftarrow$ our neighbors /* The fringe of our search */ 5: $g(v) \leftarrow 0$ for all $v \in V$ /* Initialize the path-cost function to 0 */ 6: while Our interaction constraints are still unsatisfied do 7: Find an edge $e = \langle u, v \rangle$ in the fringe that minimizes $\varepsilon = w(e) - g(u) - g(v)$ 8: 9: if *u* either is being or already was expanded by another search then Merge our execution with *u*'s search. 10: if The other search also expanded the edge $\langle v, u \rangle$ in this round then 11: $\epsilon \leftarrow \frac{\epsilon}{2}$ 12: for all $k \in \tilde{V}$: k is incident to an edge in the fringe do 13: $g(k) \leftarrow g(k) + \varepsilon$ /* Update the path-cost */ 14: $F \leftarrow (F \setminus \{e\}) \cup \delta(\{u\})$ /* Update the fringe with *e*'s successors */ 15: $\tilde{V} \leftarrow \tilde{V} \cup \{u\}$ /* Add u to the final forest */ 16: $\tilde{E} \leftarrow \tilde{E} \cup \{e\}$ /* Add e to the final forest */

for Multidirectional Graph Search

1: **procedure** MULTIDIRECTIONAL-GRAPH-SEARCH(v) **Require:** *v* is the start vertex running this search. **Ensure:** $H = \langle \tilde{V}, \tilde{E} \rangle$ is the resulting forest. 2: $\tilde{V} \leftarrow \{v\}$ 3: $\tilde{E} \leftarrow \emptyset$ 4567. Pushing Up the Duals still unsatisfied do Implicitly sets $y_{\tilde{V}} \leftarrow y_{\tilde{V}} + \epsilon$. Find an edge $e = \langle u, v \rangle$ in the number that minimizes $\varepsilon = w(e) - g(u) - g(v)$ 8: if u either is being or already was expanded by another search then 9: Merge our execution with *u*'s search. 10: if The other search also expanded the edge $\langle v, u \rangle$ in this round then 11: $\epsilon \leftarrow \frac{\epsilon}{2}$ 12: for all $k \in \tilde{V}$: k is incident to an edge in the fringe do 13: $g(k) \leftarrow g(k) + \varepsilon$ /* Update the path-cost */ $\begin{array}{l} F \leftarrow (F \setminus \{e\}) \cup \delta(\{u\}) / * \text{ Update the fringe with } e'\text{s successors } * / \\ \tilde{V} \leftarrow \tilde{V} \cup \{u\} / * \text{ Add } u'\text{ to the final forest } * / \end{array}$ 14: 15: 16: $\tilde{E} \leftarrow \tilde{E} \cup \{e\}$ /* Add *e* to the/final forest */

Technical Sketch

Technical Sketch

Assumptions

- D d
- No knowledge of global state.
- Only need to know one's neighbors.
- Guaranteed message delivery, but arbitrary latency.

40

 (d_4)

Dynamic/Streaming Problems

- 1. In certain well-defined cases, after a *modification event* the algorithm can be continued and is still guaranteed to produce a 2-optimal solution.
 - If the weights of all of v's incident edges are greater than or equal to the slack of all of their neighboring vertices' fringe nodes:

- In all other cases, we can backtrack to the most recent round during which the conditions allowed for the dynamic modification.
- 3. Worst case: backtrack to the start, which is only O(n) rounds.
- 4. Backtracking only increases memory/computation polynomially.

E. A. Sultanik The Johns Happins University APPLIED PHYSICS LABORATOR

Example Domains

E. A. Sultanik The Jokes Hapkins University

Robot Teaming

- Group of mobile robots each equipped with a wireless access point.
 - Objective of the robots: maximally cover an area with the wireless network.
 - In order to save power: Choose a maximum subset of robots that can lower their transmit power while still retaining coverage.

E. Sultanik, A. Shokoufandeh, and W. Regli

Dominating Sets of Agents in Visibility Graphs: Distributed Algorithms for Art Gallery Problems.

In Proceedings of the Ninth International Conference on Autonomous Agents and Multiagent Systems, May 2010.

E. A. Sultanik The Jokes Highins University APPLIED PHYSICS LABORATORY

Art Gallery Problems

Example

Find the minimum number of guards required to observe the interior of a polygonal area.

Variants

- Guards in the interior.
- Treasures.
- Non-uniform cost for stationing a guard.
- NP-COMPLETE.

Augment each vertex with a special guard vertex ("•").

Weight the new edges with the cost of guarding from there.

APL

E. A. Sultanik The Johns Happins University APPLIED PHYSICS LABORATORS

Weight the original visibility graph edges 0.

E. A. Sultanik The Johns Hapkins University APPLIED PHYSICS LABORATORS

Connectivity Problem: Find an acyclic subgraph such that:

- 1. every \bullet is connected to a \bullet by a path of length ≤ 2 ; and
- 2. the subgraph's weight is minimized.

E. A. Sultanik The Johns Highlins University

Technical Sketch

Round 0: All Vertices are Unguarded ("o")

API

Technical Sketch

Round 1: Unguarded components add cut-edge of min. potential.

AD
Round 2: Unguarded components add cut-edge of min. potential.

AD

Round 3: Unguarded components add cut-edge of min. potential.

AD

Round 4: Unguarded components add cut-edge of min. potential.

APL

Round 5: Unguarded components add cut-edge of min. potential.

API

Round 6: All nodes are guarded, so we terminate.

APL

Round 6: All nodes are guarded, so we terminate.

E. A. Sultanik The Johns Happins University APPLIED PHYSICS LABORATORS **Distributed Combinatorial Optimization**

Conclusions

- Certain streams data processing problems can be cast as a dynamic/distributed multiagent optimization problem.
- Measuring the performance of distributed algorithms is hard.
- In most cases, we want O(n) communication rounds.
- Distributed constraint reasoning is a powerful model that is useful for many problems.
- Approximation algorithms are often useful and sometimes necessary.
- The Primal-Dual Schema is a very powerful tool for approximation.

Thank you for your time and attention.

Questions?

Evan A. Sultanik Evan.Sultanik@jhuapl.edu http://www.sultanik.com/

APL

E. A. Sultanik The Johns Hopkins Universit

Distributed Combinatorial Optimization