H@LDS STONES FROM THE IVORY TOWER /

" BUT QWL?/ AS BAL/LAST' oy 7,

A /
\‘\13:2 Atarl Star R,alders 13:6 A Rogue Strategy fOI Splnlocks /
\ I P

\ . | | — =
13:3 Slowmg Down a Race Condition | 13 7 Reverse Engmeerlng LoRa’s PHY- -

|
\ | |y
\ 13 4 Ghtchlng Attacks over USB; or, | 13 8 Concernmg Plumbels and Popper
T \ / / /
) A Wacom Tablet Reads RFIDs \ 13 9 Where is ShnnDBC exe? /
/ / / / /
\. 13 5 Runmng AMBE Firmware in Llnux 113:10 Postscrlpt for Schlzophlemc Ghosts
/ / / /

Ures hasnak elég a szép sz6; 310 cammsaar. pocorgtfol3.pdf. October 18, 2016. N
€0, $0 USD, 10s 6d GBP, 0 RSD, 0 SEK, $50 CAD, 6 x 10*° Pengg (3 x 10° Adépengs).

Legal Note: In solidarity with :%, the Author Formerly Known as Homer Hickam, we place no restrictions
of any kind upon our authors. They are quite welcome to do whatever the hell they like with their own
work, in any medium they like, including but not limited to endeavors of theater and interpretive dance.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror—don’t merely link!—pocorgtfo13.pdf and our other issues far and wide, so our articles can help fight
the coming flame deluge. We like the following mirrors.

https://unpack.debug.su/pocorgtfo/

https://pocorgtfo.hacke.rs/

https://www.alchemistowl.org/pocorgtfo/

http://www.sultanik.com/pocorgtfo/

Technical Note: As described in PoC||GTFO 13:10, pocorgtfol3.pdf is a polyglot that may be inter-
preted as both a PDF and a PostScript file. As a PDF, this file is mostly harmless, but we warn you that
the Postscript will render differently each time, including both a randomly generated maze and—if Tavis
Ormandy hasn’t killed such a lovely bug yet—a copy of your /etc/passwd file.

Cover Art: The cover artwork from this issue is by Harry Clarke, first used to illustrate the poem Sea
Fever by John Masefield in the collection The Year’s at the Spring, 1920.

Printing Instructions: Pirate print runs of this journal are most welcome! PoC||GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11”7 x 17”) paper in
Samland, then fold to get a booklet in A4 or Letter size. Secret volcano labs in Canada may use P3 (280 mm
x 430 mm) if they like, folded to make P4. The outermost sheet should be on thicker paper to form a cover.

This 1s how to convert an issue for duplex printing.
sudo apt-get install pdfjam
pdfbook --short-edge --vanilla --paper a3paper pocorgtfol3d.pdf -o pocorgtfol3-book.pdf

Man of The Book Manul Laphroaig
Editor of Last Resort Melilot
TEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Supervisor Ange Albertini

Assistant Scenic Designer Philippe Teuwen
and sundry others

1 Read me if you want to live!

Neighbors, please join me in reading this four-
teenth release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little
collection of articles for ladies and gentlemen of dis-
tinguished ability and taste in the field of reverse en-
gineering and worshippers of weird machines. This
fourteenth release is given on paper to the fine neigh-
bors of Sao Paulo, San Diego, and Budapest.

If you are missing the first thirteen issues, we the
editors suggest pirating them from the usual loca-
tions, or on paper from a neighbor who picked up a
copy of the first in Vegas, the second in Sao Paulo,
the third in Hamburg, the fourth in Heidelberg, the
fifth in Montréal, the sixth in Las Vegas, the seventh
from his parents’ inkjet printer during the Thanks-
giving holiday, the eighth in Heidelberg, the ninth in
Montréal, the tenth in Novi Sad or Stockholm, the
eleventh in Washington D.C., the twelfth in Heidel-
berg, or the thirteenth in Montréal.

After our paper release, and only when qual-
ity control has been passed, we will make an elec-
tronic release named pocorgtfol3.pdf. It is valid
as PDF, ZIP, and PostScript; please read it with
Adobe Reader, unzip, and gv.

We begin on page 5 with the story of how STAR
RAIDERS by Doug Neubauer for the Atari 400 was
taken apart by Lorenz Weist, from a mere ROM car-
tridge dump to annotated and literate 6502 disas-
sembly. By a stroke of luck, Lorenz was able to read
Doug’s original source code for the game after com-

pleting his reverse engineering project, giving him
the rare opportunity to confirm his understanding
of the game’s design and behavior.

On page 24, James Forshaw introduces us to a
nifty little trick for simplifying reliable exploitation
of race condition vulnerabilities. Rather than spin
up a dozen attempts to improve racetrack odds, he
instead induces situations with pathological perfor-
mance penalties to Windows NT system calls, stun-
ning the threads of execution that might interfere
with his exploit for twenty minutes or more!

Micah Elizabeth Scott continues to send us bril-
liant articles that refuse to be described by a single
abstract, so let’s just say that on page 30 she ex-
plains a USB magic trick in which her FaceWhis-
perer board—combining the Facedancer and the
Chip Whisperer—is able to reliably glitch the USB
stack of an embedded device to dump its firmware.
Or, we could say that on page 30 she explains how
to use undocumented commands from that firmware
dump to program the Harvard device by ROP. Or,
we could say that on page 30 she shows you to read
RFID tags with a Wacom tablet. These tricks are
all the same article, and you’d be a fool not to read
it.

In PoC||GTFO 10:8, Travis Goodspeed jailbroke
the Tytera MD380 radio to allow for firmware ex-
traction and patching. Since then, a lively open
source project has sprung up, with fancy new fea-
tures and fixes to old bugs. On page 38, he describes
how to rip the AMBE audio codec out of the radio
firmware, transforming it into a command line audio
processing tool that runs on any Linux workstation.
Similar tricks can be used to quickly toss together
emulators for many ARM and PowerPC embedded
systems, re-using their library functions, or fuzzing
their parsers in the familiar environment of an ev-
eryday laptop.

Evan Sultanik is back with a safe cracking adven-
ture that could only be expressed as a play in three
acts, narrated by our own Pastor Manul Laphroaig.
Speaking parts are available for Alice Feynman, Bob
Schrute, Havva al-Kindi, and the ghost of Paul
Erdés. You'll find Evan’s script on page 43.

Matt Knight has been reverse engineering the
PHY of LoRa, a low-power protocol for sub-GHz
wireless networking over long distances. On page 48
you will find not just the protocol details that al-
lowed him to write an open source receiver, but, far
more importantly, you will also find the methods by
which he reverse engineered this information from
captured packets, vague application notes, and the
outright lies of the patent application.

Pastor Manul Laphroaig, your friendly neighbor-
hood evangelist of the gospel of the weird machines,

has a sermon for you on page 60. He reminds us
that science takes place neither on stage in front of
a live studio audience nor in committees and gov-
ernment offices, but over a glass of fine scotch that’s
accompanied by finer conversation of practitioners.
In the same way that we oughtn’t put Tim the “Tool
Man” Taylor in charge of vocational education, we
ought to leave the teaching of science to those who
do it, not those who talk about it on TV.

Geoff Chappell is an old-school reverse engineer,
an x86 archaeologist who has spent the past twenty-
four years reading Windows binaries to identify all
the forgotten features and corner cases that the rest
of us might take for granted.! On page 63, he
introduces us to the mystery of Microsoft’s Shim
Database Compiler, an unpublished tool for compil-
ing driver shims that doesn’t seem to be available
to the outside world. Geoff shows us that, in fact,
the tool is available, wrapped up inside of a GUI
as QFixApp.exe or CompatAdmin.exe. By patch-
ing the program to expose its intact winmain(), he
can recover the long-lost ShimDBC. exe for compiling
Windows driver compatibility shims from XML!

Evan Sultanik and Philippe Teuwen have teamed
up on page 71, to explain the inner workings of
pocorgtfol3.pdf, which you can rename to read
as pocorgtfol3.zip or pocorgtfol3.ps.

On page 72, the last page, we pass around the
collection plate. Our church has no interest in cash
or cheques, but we’d love your donation of a nifty
reverse engineering story. Please send one our way.

1Geoff was the first to discover Aaron R. Reynolds’ “AARD” code from the beta release of Windows 3.1 that intentionally
broke compatibility with DR-DOS. He also has a delightful article on exactly how AOL exploited a buffer overflow in their own
AOL Instant Messenger client to distinguish it from Microsoft’s clone, MSN Messenger.

2 Reverse Engineering Star Raiders

2.1 Introduction

ATARjéseree

STAR RAIDERS

Model CXL4011

Use with

ATARI® 400™ or ATARI 800™
PERSONAL COMPUTER SYSTEMS

LA\ [\ [{ [T ———— (W]

STAR RAIDERS is a seminal computer game pub-
lished by Atari Inc. in 1979 as one of the first titles
for the original Atari 8-bit Home Computer System
(Atari 400 and Atari 800). It was written by Atari
engineer Doug Neubauer, who also created the sys-
tem’s POKEY sound chip. STAR RAIDERS is consid-

by Lorenz Wiest

ered to be one of the ten most important computer
games of all time.?.

f \
[ATARIZOO)

—_—]

The game is a 3D space combat flight simulation
where you fly your starship through space; shooting
at attacking Zylon spaceshipss The game’s universe
is made up of a 16 x 8 grid of sectorsm Some of
them contain enemy Zylon unitss some a friendly
starbasem The Zylon units converge toward the star-
bases and try to destroy them. The starbases serve
as repair and refueling points for your starship. You
move your starship between sectors with your hyper-
warp drivem The game is over if you have destroyed
all Zylon ships, have ran out of energy, or if the
Zylons have destroyed all starbases.

el T I CHeaRT

At a time when home computer games were
pretty static — think SPACE INVADERS (1978) and
PAC MAN (1980) — STAR RAIDERS was a huge hit
because the game play centered on the very dynamic
3D first-person view out of your starship’s cockpit
window.

The original Atari 8-bit Home Computer System

24Is That Just Some Game? No, It’s a Cultural Artifact.” Heather Chaplin, The New York Times, March 12, 2007.

has up to 48 KB RAM and uses a Motorola 6502
CPU. The same CPU is also used in the Apple II,
the Commodore C64 (a 6502 variant), and the T-
800 Terminators® Several proprietary Atari custom
chips provide additional capabilities to the system.
STAR RAIDERS shows off many of them: 5 Play-
ers (sprites), mixed text and pixel graphics modes,
dynamic Display Lists, a custom character set, 4-
channel sound, Vertical Blank Interrupt and Dis-
play List Interrupt code — even the BCD mode of
the 6502 CPU is used «

joystick triggers

177-1.70Mlz

-
“l.= Peripheral
6502 Interface
inte Adaptor
b1 | $
‘ ﬁ ¢ ‘¢¢ keyboard ﬂ? z
speaker g2
wl;{{BA}:;I(B left right CO ‘ disk
) cartridge cartridge ()§ Ada is

drives

§

other
periph.

ROM

I have been always wondering what made STAR
RAIDERS tick. I was especially curious how that
3D first-person view star field worked, in particu-
lar the rotations of the stars when you fly a turn.
So I decided to reverse engineer the game, aiming
at a complete, fully documented assembly language
source code of STAR RAIDERS.

STAR RAIDERS
for the Atari 8-bit Home Computer System
Reverse-engineered and documented assembly language source code
by
Lorenz MWiest
Clo.wiestcat) web.de)

First Release
22-SEP-2015

Last update
16-AUG-2016

KKK KKRKR KKK KKK KKK KK X

STAR RAIDERS was created by Douglas Neubauer
STAR RAIDERS was published by Atari Inc.

Iy

In the following sections I'll show you how I ap-
proached the reverse engineering effort, introduce
my favorite piece of code in STAR RAIDERS, talk
about how the tight memory limits influenced the
implementation, reveal some bugs, point at some
mysterious code, and explain how I got a grip on
documenting STAR RAIDERS. From time to time, to
provide some context to you, I will reference memory
locations of the game, which you can look up in the
reverse engineered, complete, and fully documented
assembly language source code of STAR RAIDERS
available on GitHub.*

2.2 Getting Started

STAR RAIDERS is distributed as an 8 KB ROM car-
tridge, occupying memory locations $A000 to $BFFF.

The obvious first step was to prod a ROM dump
with a disassembler and to apply Atari’s published
hardware and OS symbols to the disassembly. To
my surprise this soon revealed that code and data
were clearly separated into three parts:

$4000 — $A149 Data (Part 1 of 2)
$a14A — $B8DE Code (6502 instructions)
$B8DF — $BFFF Data (Part 2 of 2)

This clear separation helped me instantly to get
an overview of the code part, as I could create a
disassembly of the code in one go and not having to
sift slowly through the bytes of the ROM, deciding
which ones are instructions and which ones are data.

Closer inspection of the code part revealed that it
was composed of neatly separated subroutines. Each
subroutine handles a specific task. The largest sub-
routine is the main game loop GAMELOOP ($A1F3),
shown in Figure 1. What I expected to be spaghetti
code — given the development tools of 1979 and the
substantial amount of game features crammed into
the 8K ROM — turned out to be surprisingly struc-
tured code. Table 1 lists all subroutines of STAR
RAIDERS, as their function emerged during the re-
verse engineering effort, giving a good overview how
the STAR RAIDERS code is organized.

Figure 2 shows the “genome sequence” of the
STAR RAIDERS 8 KB ROM: The 8192 bytes of the
game are stacked vertically, with each byte repre-
sented by a tiny, solid horizontal line of 8 pixels.
This stack is split into strips of 192 bytes, arranged
side-by-side. Alternating light and dark blue areas
represent bytes of distinct subroutines. Alternat-
ing light and dark green and purple areas repre-
sent bytes of distinct sections of data (lookup tables,
graphical shapes, etc.). When data bytes represent
graphical shapes, the solid line of a byte is replaced
by its actual bit pattern (in purple color).

There are a couple of interesting things to see:

e The figure reflects the ROM’s separation into
a data part (green and purple), a code part
(blue), and one more data part (green and pur-

ple).

e The first data part contains mostly the custom

3In the movie TERMINATOR, (1984) there are scenes showing the Terminator’s point of view in shades of red. In these
scenes lines of source code are listed onscreen. Close inspection of still frames of the movie reveal this to be 6502 assembly

language source code.

4git clone https://github.com/lwiest/StarRaiders or unzip pocorgtfol3.pdf StarRaiders.zip

INITCOLD mitialize program (cold start)
$A14A

1

1

INITSELECT Eutry point when SELECT function key was pressed
$A15A

1

1

INITDEMO Entry point when program switches into demo mode
$A15C

1
INITSTART Entry point when START function key was pressed e
$A1BE

$A1F3

GAMELOOP

$A6DO

ROTATE Rotate position vector component

$5608 (coordinate) by fixed angle

ke

7.

PROJECTION calculate pixel column (or row) number
$AA21

from position vector

SCREENCOLUMN Caleulate pixel column number
B6FB

5 from centered pixel column number

A

b

SCREENRQW Calculate pixel row number

$BTIE from centered pixel row number

i\

be.

SELECTWARP Select hyperwarp arrival location
$B162

on Galactic Chart

DRAWLINES braw torsontaland srial s D
AT6F

INITPOSVEC mitialize position vector of a space object
764

ke

KEYBOARD Handle Keyboard Input

$AFFE

COLLISTION betect a collision of our starship's photon torpedoes
$AF3D

TRIGGER Handle joystick trigger

$AE29

UPDATTCOMP update Attack Computer Display H

$ATBF

Y

DOCKING Handle docking at starbase,

$ACE6 launch and return of transfer vessel

A= == =B A is followed by B in memory

A emmmpe-1 A jumps to B (no return)

FLUSHGAMELQQP Handle remaining tasks at the end
B4E4

of a game loop iteration
UPDTITLE update title line H
$B216
HYPERWARP Handie hyperwarp
AB9B

UPDPANEL update Control Panel Display
804

$B

TTITIXTIITTIITT

NOISE Copy noise sound pattern (]

SAEAS

DECENERGY becrease encrgy
86F
CLRPLAYFIELD Clear PLAYFIELD memory H
EOD
MQPDLST Modify Display List H
GAMEOQOVER. Handle Game Over
$B10A

SETVIEW sct Front view

$B045

INITEXPL mitialize explosion
C6B

$A

DAMAGE Damage or destroy one of our starship's subsystems

$AEEL

MANEUVER, Mancuver our starship's and Zylon
79

photon torpedoes and Zylon ships

A—(B A calls B (and returns)

Figure 1. Simplified Call Graph of Start Up and Game Loop

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

$A14A
$A15A
$A15C
$A15E
$A1F3
$A6D1
$AT18
$AT51
SAT6F
$AT82
$AT84
$A7TBF
$A89B
$A980
$A987
$A98D
$A9B4
$AA21
SAAT9
$AC6B
SACAF
$ACC1
$ACE6
$ADF1
SAEOD
$SAEOF
$AE29
SAEA8
SAECA
$AEE1
$AF3D
$SAFFE
$B045
$B07B
$B10A
$B121
$B162
$B1A7
$B216
$B223
$B2AB
$B3A6
$B3BA
$B4B9
$B4E4
$B69B
$B6FB
$B71E
$B764
$B7BE
$B7F1
$B804
$B8GF
$B8AT

$B8CD

INITCOLD
INITSELECT
INITDEMO
INITSTART
GAMELOOP
VBIHNDLR
DLSTHNDLR
IRQHNDLR
DRAWLINES
DRAWLINE
DRAWLINE2
UPDATTCOMP
HYPERWARP
ABORTWARP
ENDWARP
CLEANUPWARP
INITTRAIL
PROJECTION
MANEUVER
INITEXPL
COPYPOSVEC
COPYPOSXY
DOCKING
MODDLST
CLRPLAYFIELD
CLRMEM
TRIGGER
NOISE
HOMINGVEL
DAMAGE
COLLISION
KEYBOARD
SETVIEW
UPDSCREEN
GAMEOVER
GAMEOVER2
SELECTWARP
CALCWARP
UPDTITLE
SETTITLE
SOUND

BEEP
INITIALIZE
DRAWGC
FLUSHGAMELOOP
ROTATE
SCREENCOLUMN
SCREENROW
INITPOSVEC
RNDINVXY
ISSURROUNDED
UPDPANEL
DECENERGY
SHOWCOORD

SHOWDIGITS

Initialize program (Cold start)

Entry point when SELECT function key was pressed
Entry point when program switches into demo mode
Entry point when START function key was pressed
Game loop

Vertical Blank Interrupt Handler
Display List Interrupt Handler
Interrupt Request (IRQ) Handler
Draw horizontal and vertical lines
Draw a single horizontal or vertical
Draw blip in Attack Computer

Update Attack Computer Display
Handle hyperwarp

Abort hyperwarp

End hyperwarp

Clean up hyperwarp variables
Initialize star trail during STAR TRAIL PHASE of hyperwarp
Calculate pixel column (or row) number from position vector
Maneuver our starship’s and Zylon photon torpedoes and Zylon
Initialize explosion

Copy a position vector

Copy x and y components (coordinates) of position vector
Handle docking at starbase, launch and return of transfer
Modify Display List

Clear PLAYFIELD memory

Clear memory

Handle joystick trigger

Copy noise sound pattern

Calculate homing velocity of our starship’s photon torpedo 0
Damage or destroy one of our starship’s subsystems

Detect a collision of our starship’s photon torpedoes

Handle Keyboard Input
Set Front view

Clear PLAYFIELD, draw
Handle game over
Game over (Mission successful)

Select hyperwarp arrival location on Galactic Chart
Calculate and display hyperwarp energy

Update title line

Set title phrase in title
Handle sound effects
Copy beeper sound pattern
More game initialization
Draw Galactic Chart
Handle remaining tasks at the end of a game loop iteration
Rotate position vector component (coordinate) by fixed angle

line

Attack

line

ships

vessel

or 1

Calculate pixel column number from centered pixel column number

Calculate pixel row number from centered pixel row number
Initialize position vector of a space object

Randomly invert the x and y components of a position vector
Check if a sector is surrounded by Zylon units

Control Panel Display

Decrease energy

Display a position vector component (coordinate) in
Control Panel Display

Display a value by a readout of the Control Panel Display

Table 1. Star Raiders Subroutines

Ao Alg80 A300 A480 A600 A780 A900 AA8O ACee AD8O AFeo

AeCo A240 A3Co A540 A6CO A840 A9Co AB40 AcCe AE40
- |

+60 - .

+68 l—

+B0O I I
+B8 l I

+Co .

x

i

-
5
=

+78 1:!:-|

+80 - - -

+88 -2- -
»

E988514BBZBBEZCGB3BGBAAG8566BscaBGSBB749BSGGBBCB8989BMQEBQBEECBBCSBEDAGBEBGBECGBFBG

01 02 ©3 04 ©5 06 ©7 ©8 @9 1o 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

>k BITMAP

@ CODE WE DATA

Figure 2. Genome Sequence of the STAR RAIDERS ROM

font (in strips 1-2).

e The largest contiguous (dark) blue chunk rep-
resents the 1246 bytes of the main game loop
GAMELOOP ($A1F3) (in strips 3-10).

e At the beginning of the second data part are
the shapes for the Players (sprites) (in strips
34-36).

e The largest contiguous (light) green chunk rep-
resents the 503 bytes of the game’s word table
WORDTAB ($BC2B) (in strips 38-41).

A good reverse engineering strategy was to start
working from code locations that used Atari’s pub-
lished symbols, the equivalent of piecing together
the border of a jigsaw puzzle first before starting to
tackle the puzzle’s center. Then, however, came the
inevitable and very long stretch of reconstructing
the game’s logic and variables with a combination
of educated guesses, trial-and-error, and lots of pa-
tience. At this stage, the tools I used mostly were
nothing but a text editor (Notepad) and a word pro-
cessor (Microsoft Word) to fill the gaps in the doc-
umentation of the code and the data. I also created

a memory map text file to list the used memory lo-
cations and their purpose. These entries were con-
tinually updated — and more than often discarded
after it turned out that I had taken a wrong turn.

2.3 A Programming Gem: Rotating
3D Vectors

What is the most interesting, fascinating, and un-
expected piece of code in STAR RAIDERS? My pick
would be the very code that started me to reverse
engineer STAR RAIDERS in the first place: subrou-
tine ROTATE ($B69B), which rotates objects in the
game’s 3D coordinate space (shown in Figure 3).
And here is why: Rotation calculations usually in-
volve trigonometry, matrices, and so on — at least
some multiplications. But the 6502 CPU has only
8-bit addition and subtraction operations. It does
not provide either a multiplication or a division op-
eration — and certainly no trig operation! So how do
the rotation calculations work, then?

Let’s start with the basics: The game uses a 3D
coordinate system with the position of our starship
at the center of the coordinate system. The loca-
tions of all space objects (Zylon ships, meteors, pho-

10

ton torpedoes, starbase, transfer vessel, Hyperwarp
Target Marker, stars, and explosion fragments) are
described by a position vector relative to our star-
ship.

A position vector is composed of an x, y, and z
component, whose values I call the x, y, and z coor-
dinates with the arbitrary unit <KM>. The range
of a coordinate is —65536 to 465535 <KM>.

Each coordinate is a signed 17-bit integer num-
ber, which fits into three bytes. Bit 16 contains
the sign bit, which is 1 for positive and 0 for nega-
tive sign. Bits 15 to 0 are the mantissa as a two’s-
complement integer.

Mantissa
B16 B15...B8 B7....B0

0000000% sk skokokokokokkk

Sign

Some example bit patterns for coordinates:

00000001 11111111 11111111 = 465535 <KM>
00000001 00000001 00000000 = +256 <KM>
00000001 00000000 11111111 = +255 <KM>
00000001 00000000 00000001 = +1 <KM>
00000001 00000000 00000000 = +0 <KM>
00000000 11111111 11111111 = -1 <KM>
00000000 11111111 11111110 = -2 <KM>
00000000 11111111 00000001 = —255 <KM>
00000000 11111111 00000000 = —256 <KM>
00000000 00000000 00000000 = —65536 <KM>

The position vector for each space object is
stored in nine tables (3 coordinates x 3 bytes for
each coordinate). There are up to 49 space objects
used in the game simultaneously, so each table is 49

bytes long:
XPOSSIGN XPOSHI XPOSLO
($09DE. . $0A0E) ($0A71..80AA1) ($0BO4..$0B34)
YPOSSIGN YPOSHI YPOSLO
($OAOF . . $0A3F) ($0AA2..$0AD2) ($0B35..$0B65)
ZPOSSIGN ZPOSHI ZPOSLO

($09AD. .$09DD) ($0A40..$0A70) ($0AD3..$0BO3)

With that explained, let’s have a look at sub-
routine ROTATE ($B69B). This subroutine rotates a
position vector component (coordinate) of a space
object by a fixed angle around the center of the
3D coordinate system, the location of our starship.
This operation is used in 3 out of 4 of the game’s
view modes (Front view, Aft view, Long-Range Scan
view) to rotate space objects in and out of the view.

10

2.3.1 Rotation Mathematics

The game uses a left-handed 3D coordinate system
with the positive x-axis pointing to the right, the
positive y-axis pointing up, and the positive z-axis
pointing into flight direction.

y-axis Z-axis

Z

B

X x’

z-axis

x-axis X-axis

A rotation in this coordinate system around the
y-axis (horizontal rotation) can be expressed as

2’ = cos(ry)x + sin(ry)z (1)
!
z =

—sin(ry)z + cos(ry)z

where 7, is the clockwise rotation angle around the
y-axis, x and z are the coordinates before this ro-
tation, and the primed coordinates z’ and z’ the

coordinates after this rotation. The y-coordinate is
not changed by this rotation.

y-axis y-axis

y

7-axis

/>

zZ 7

X-axis G z-axis

A rotation in this coordinate system around the
x-axis (vertical rotation) can be expressed as

(2)

2" = cos(ry)z + sin(ry)y

y' = —sin(ry)z + cos(ry)y

where r, is the clockwise rotation angle around the
x-axis, z and y are the coordinates before this ro-
tation, and the primed coordinates z’ and 3’ the
coordinates after this rotation. The x-coordinate is
not changed by this rotation.

2.3.2 Subroutine Implementation Overview

A single call of subroutine ROTATE ($B69B) is able
to compute one of the four expressions in Equa-
tions 1 and 2. To compute all four expressions to

get the new set of coordinates, this subroutine has
to be called four times. This is done twice in pairs
in GAMELOOP ($A1F3) at $A391 and $A398, and at
$A3AE and $A3B5, respectively.

The first pair of calls calculates the new z and
z coordinates of a space object due to a horizon-
tal (left/right) rotation of our starship around the
y-axis following the expressions of Equation 1.

The second pair of calls calculates the new y and
z coordinates of the same space object due to a ver-
tical (up/down) rotation of our starship around the
x-axis following the expressions of Equation 2.

If you look at the code of ROTATE ($B69B), you
may be wondering how this calculation is actually
executed, as there is neither a sine nor cosine func-
tion call. What you’ll actually find implemented,
however, are the following calculations:

Joystick Left

r:=x+2/64 (3)
z:=—x/64+ 2

Joystick Right
ri=x—2z/64 (4)
z:=x/64+z

Joystick Down
y =y +z/64 (5)
z:=—y/64+ 2z

Joystick Up
yi=y—z/64 (6)
z:=y/64+ z

2.3.3 CORDIC Algorithm

When you compare the expressions of Equations 1-2
with expressions of Equations 3-6, notice the simi-
larity between the expressions if you substitute®

From sin(ry,) = 1/64 and sin(r,) = 1/64 you can
derive that the rotation angles r, and r, by which
the space object is rotated (per game loop iteration)
have a constant value of 0.89°, as arcsin(1/64) =
0.89°.

What about cos(r,) and cos(ry)? The substi-
tution does not match our derived angle exactly,
because c0s(0.89°) = 0.99988 and is not exactly
1. However, this value is so close that substitut-
ing cos(0.89°) with 1 is a very good approximation,
simplifying calculations significantly.

Another significant simplification results from
the division by 64, as the actual division operation
can be replaced with a much faster bit shift opera-
tion.

This calculation-friendly way of computing rota-
tions is also known as the “CORDIC (COordinate
Rotation DIgital Computer)” algorithm.

2.3.4 Minsky Rotation

There is one more interesting mathematical sub-
tlety: Did you notice that expressions of Equa-
tions 1 and 2 use a new (primed) pair of variables
to store the resulting coordinates, whereas in the
implemented Equations 3-6, the value of the first
coordinate of a coordinate pair is overwritten with
its new value and this value is used in the subsequent
calculation of the second coordinate? For example,
when the joystick is pushed left, the first call of this
subroutine calculates the new value of x according
to first expression of Equation 3, overwriting the old
value of x. During the second call to calculate z ac-
cording to the second expression of Equation 3, the
new value of x is used instead of the old one. Is this
to save the memory needed to temporarily store the
old value of =7 Is this a bug? If so, why does the
rotation calculation actually work?

Have a look at the expressions of Equation 3 (the
other Equations 4-6 work in a similar fashion):

x:=x+2/64
z:=—z/64+z

If we substitute 1/64 with e, we get

r:=x+ ez

Z:=—er—+z

5 This substitution gave a friendly mathematician who happened to see it a nasty shock. She yelled at us that cos?z+sin?z = 1
for all real x and forever, and therefore this could not possibly be a rotation; it’s a rotation with a stretch! We reminded her
of the old joke that in wartime the value of the cosine has been known to reach 4. —PML

11

Note that z is calculated first and then used in
the second expression. When using primed coordi-
nates for the resulting coordinates after calculating
the two expressions we get

/

T =x+ez

2 i=—ex' +2
=—clx+ez)+2
=—er+(1—e*)z

or in matrix form

(2)=(L) (7)

Surprisingly, this turns out to be a rotation ma-
trix, because its determinant is (1 x (1 —e?) — (—e x
e)) = 1. (Incidentally, the column vectors of this
matrix do not form an orthogonal basis, as their
scalar product is 1 x e + (—e x (1 — €?)) = —e?.
Orthogonality holds for e = 0 only.)

This kind of rotation calculation is described
by Marvin Minsky in AIM 239 HAKMEMS and is

called “Minsky Rotation.”

2.3.5 Subroutine Implementation Details

To better understand how the implementation of
this subroutine works, we must again look at Equa-
tions 3—6. If you rearrange the expressions a little,
their structure is always of the form:

TERM1 := TERM1 SIGN TERM2/64

or shorter

TERM1 := TERM1 SIGN TERM3

where TERM3 := TERM2/64 and SIGN := 4 or — and
where TERM1 and TERM2 are coordinates. In fact, this
is all this subroutine actually does: It simply adds
TERM2 divided by 64 to TERM1 or subtracts TERM2
divided by 64 from TERM1.

When calling this subroutine the correct table
indices for the appropriate coordinates TERM1 and
TERM2 are passed in the CPU’s Y and X registers,
respectively.

What about SIGN between TERM1 and TERM3?
Again, have a look at Equations 3-6. To compute

Sunzip pocorgtfol3.pdf AIM-239.pdf #Item 149, page 73.

12

the two new coordinates after a rotation, the SIGN
toggles from plus to minus and vice versa. The SIGN
is initialized with the value of JOYSTICKDELTA ($6D)
before calling subroutine ROTATE ($B69B, Figure 3)
and is toggled in every call of this subroutine. The
initial value of SIGN should be positive (+, byte
value $01) if the rotation is clockwise (the joystick is
pushed right or up) and negative (—, byte value $FF)
if the rotation is counter-clockwise (the joystick is
pushed left or down), respectively. Because SIGN is
always toggled in ROTATE ($B69B) before the adding
or subtraction operation of TERM1 and TERM3 takes
place, you have to pass the already toggled value
with the first call.

Unclear still are three instructions starting at ad-
dress $B6AD. They seem to set the two least signifi-
cant bits of TERM3 in a random fashion. Could this
be some quick hack to avoid messing with exact but
potentially lengthy two’s-complement arithmetic?

2.4 Dodging Memory Limitations

It is impressing how much functionality was
squeezed into STAR RAIDERS. Not surprisingly, the
bytes of the 8 KB ROM are used up almost com-
pletely. Only a single byte is left unused at the very
end of the code. When counting four more bytes
from three orphaned entries in the game’s lookup
tables, only five bytes in total out of 8,192 bytes are
actually not used. ROM memory was extremely pre-
cious. Here are some techniques that demonstrate

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

58

60

62

64

66

68

70

72

74

76

B69B
B69E
B6A0
B6A2

B6A4
B6A6
B6AS
B6AB

B6AD
B6BO
B6B2

B6B5
B6B6
B6B8
B6BA
B6BB
B6BD

B6BF
B6C1
B6C3
B6C5

B6C7
B6C8
B6CB
B6CD

B6DO
B6D3
B6D5

B6D8
B6DB
B6DD
B6EO

B6E1
B6E2
B6ES5
B6ET

B6EA
B6ED
B6EF

B6F2
B6F5
B6F7
B6FA

=006A
006B
=006C

BDADO09
4901
F002
A9FF

856B
856C
BD400A
856A

ADOAD2
09BF
5DD30A

0A
266A
266B
0A
266A
266B

A56D
49FF
856D
301A

18
B9D30A
656A
99D30A

B9400A
656B
99400A

B9ADO09
656C
99AD09
60

38
B9D30A
E56A
99D30A

B9400A
E56B
99400A

B9ADO09
E56C
99AD09
60

INPUT

X = Position vector component index of TERM2. Used values are:
$00..830 —> z—component (z—coordinate) of position vector 0..48
$31..$61 —> x—component (x—coordinate) of position vector 0..48
$62..892 —> y—component (y—coordinate) of position vector 0..48

Y = Position vector component index of TERMl. Used values are:
$00..$30 —> z—component (z—coordinate) of position vector 0..48
$31..%$61 —> x—component (x—coordinate) of position vector 0..48
$62..892 —> y—component (y—coordinate) of position vector 0..48

JOYSTICKDELTA ($6D) = Initial value of SIGN. Used values are:
$01 —> (= Positive) Rotate right or up
$FF —> (= Negative) Rotate left or down

TERM3 is a 24—bit value, represented by 3 bytes as
$(sign) (high byte)(low byte)

;
L . TERM3LO = $6A ; TERM3 (high byte), where TERM3 := TERM2 / 64
L. TERM3HI $6B ; TERM3 (low byte), where TERM3 := TERM2 / 64
L.TERM3SIGN = $6C ; TERM3 (sign), where TERM3 := TERM2 / 64
ROTATE LDA ZPOSSIGN,X
EOR #801 5
BEQ SKIP224 ; Skip if sign of TERM2 is positive
LDA #$FF ;
SKIP224 STA L.TERM3HI ; If TERM2 pos. —> TERM3 := $0000xx (= TERM2 / 256)
STA L.TERM3SIGN ; If TERM2 neg. —> TERM3 := $FFFFxx (= TERM2 / 256)
LDA ZPOSHI, X ; where xx := TERM2 (high byte)
STA L.TERM3LO H
LDA RANDOM ; (?) Hack to avoid messing with two—complement’s
ORA #$BF ; (?) arithmetic? Provides two least significant
EOR ZPOSLO,X ; (?) bits B1..0 in TERMS3.
ASL A ; TERM3 := TERM3 % 4 (= TERM2 / 256 % 4 = TERM2 / 64)
ROL L .TERMS3LO H
ROL L.TERMS3HI H
ASL A ;
ROL L .TERMS3LO H
ROL L.TERM3HI H
LDA JOYSTICKDELTA ; Toggle SIGN for next call of ROTATE
EOR #S$FF 5
STA JOYSTICKDELTA H
BMI SKIP225 ; If SIGN negative then subtract, else add TERMS3

Skt A AIETON ook ok ok ko ok ok ok ok ok ok ko ok o ks ok ok ks ok ok o kK ok o ko ok o Kk o o Kk ok ok o KKk o o K kK o ok K K ok o K K
CcLC ; TERM1 := TERMI1 + TERMS3
LDA ZPOSLO,Y (24— bit addition)
ADC L.TERM3LO
STA ZPOSLO,Y

LDA ZPOSHI,Y H
ADC L.TERMS3HI ;
STA ZPOSHI,Y

LDA ZPOSSIGN,Y ;
ADC L.TERMS3SIGN ;
STA ZPOSSIGN,Y ;

5

RTS
ook STUDETACEION ok ok ook ook ook ok ok ok ok ok Ko Ko Ko KoK K K KR K K R KR K K K R K K K KK K K
SKIP225 SEC ; TERM1 := TERMI1 — TERM3

LDA ZPOSLO,Y ; (24—bit subtraction)
SBC L.TERM3LO ;
STA ZPOSLO,Y

LDA ZPOSHI,Y ;
SBC L.TERMS3HI ;
STA ZPOSHI,Y ;

LDA ZPOSSIGN,Y ;
SBC L.TERMS3SIGN 5
STA ZPOSSIGN,Y ;
RTS 5

Figure 3. ROTATE Subroutine at $B69B

13

the fierce fight for each spare ROM byte.

2.4.1 Loop Jamming

Loop jamming is the technique of combining two
loops into one, reusing the loop index and option-
ally skipping operations of one loop when the loop
index overshoots.

How much bytes are saved by loop jamming? As
an example, Figure 4 shows an original 19-byte frag-
ment of subroutine INITIALIZE ($B3BA) using loop
jamming. The same fragment without loop jam-
ming, shown in Figure 5, is 20 bytes long. So loop
jamming saved one single byte.

Another example is the loop that is set up at
$A165 in INITCOLD ($A144). A third example is the
loop set up at $B413 in INITIALIZE ($B3BA). This
loop does not explicitly skip loop indices, thus sav-
ing four more bytes (the CMP and BCS instructions)
on top of the one byte saved by regular loop jam-
ming. Thus, seven bytes are saved in total by loop
jamming.

2.4.2 Sharing Blank Characters

One more technique to save bytes is to let strings
share their leading and trailing blank characters. In
the game there is a header text line of twenty char-
acters that displays one of the strings “LONG RANGE
SCAN,” “AFT VIEW,” or “GALACTIC CHART.” The dis-
play hardware directly points to their location in the
ROM. They are enclosed in blank characters (bytes
of value $00) so that they appear horizontally cen-
tered.

A naive implementation would use 3 x 20 = 60
bytes to store these strings in ROM. In the actual
implementation, however, the trailing blanks of one
header string are reused as leading blanks of the
following header, as shown in Figure 6. By shar-
ing blank characters the required memory is reduced
from 60 bytes to 54 bytes, saving six bytes.

2.4.3 Reusing Interrupt Exit Code

Yet another, rather traditional technique is to reuse
code, of course. Figure 7 shows the exit code of the
Vertical Blank Interrupt handler VBIHNDLR ($A6D1)
at $A715, which jumps into the exit code of the Dis-
play List Interrupt handler DLSTHNDLR ($A718) at
$A74B, reusing the code that restores the registers
that were put on the CPU stack before entering the
Vertical Blank Interrupt handler.

14

This saves another six bytes (PLA, TAY, PLA, TAX,
PLA, RTI), but spends three bytes (JMP JUMP004), in
total saving three bytes.

2.5 Bugs

There are a few bugs, or let’s call them glitches, in
STAR RAIDERS. This is quite astonishing, given the
complex game and the development tools of 1979,
and is a testament to thorough play testing. The
interesting thing is that the often intense game play
distracts the players’ attention from noticing these
glitches, just like what a skilled parlor magician
would do.

2.5.1 A Starbase Without Wings

When a starbase reaches the lower edge of the graph-
ics screen and overlaps with the Control Panel Dis-
play below (Figure 8 (left), screenshot) and you
nudge the starbase a little bit more downward, its
wings suddenly vanish (Figure 8 (right), screenshot).

The reason is shown in the insert on the right
side of the figure: The starbase is a composite of
three Players (sprites). Their bounding boxes are
indicated by three white rectangles. If the verti-
cal position of the top border of a Player is larger
than a vertical position limit, indicated by the tip
of the white arrow, the Player is not displayed. The
relevant location of the comparison is at $A534 in
GAMELOOP ($A1F3). While the Player of the central
part of the starbase does not exceed this vertical
limit, the Players that form the starbase’s wings do
so, and are thus not rendered.

This glitch is rarely noticed because players do
their best to keep the starbase centered on the
screen, a prerequisite for a successful docking.

2.5.2 Shuflling Priorities

There are two glitches that are almost impossible to
notice (and I admit some twisted kind of pleasure to
expose them, ;-):

e During regular gameplay, the Zylon ships and
the photon torpedoes appear in front of the
cross hairs (Figure 9 (left)), as if the cross hairs
were light years away.

e During docking, the starbase not only appears
behind the stars (Figure 9 (right)) as if the
starbase is light years away, but the transfer
vessel moves in front of the cross hairs!

B3BA A259 INITIALIZE LDX #89 ; Set 89(+1) GRAPHICS7 rows from DSPLST+5 on
B3BC A90D LOOP060 LDA #$0D ; Prep DL instruction $0D (one row of GRAPHICST7)
B3BE 9D8502 STA DSPLST+5,X ; DSPLST+5,X := one row of GRAPHICS7
B3C1 EO00A CPX #10
B3C3 BO005 BCS SKIP195 H
B3C5 BDA9BF LDA PFCOLORTAB,X ; Copy PLAYFIELD color table to zero—page table
B3C8 95F2 STA PFOCOLOR,X ; (loop jamming)
B3CA CA SKIP195 DEX
B3CB 10EF BPL LOOPO060

Figure 4. INITIALIZE Subroutine at $B3BA (Excerpt)
B3BA A259 INITIALIZE LDX #89 ; Set 89(+1) GRAPHICS7 rows from DSPLST-+5 on
B3BC A90D LOOP060 LDA #$0D ; Prep DL instruction $0D (one row of GRAPHICST7)
B3BE 9D8502 STA DSPLST+5,X ; DSPLST+5,X := one row of GRAPHICS7
B3C1 CA DEX
B3C2 10F8 BPL LOOPO060
B3C4 A209 LDX #9 H
B3C6 BDAABF LOOP060B LDA PFCOLORTAB, X ; Copy PLAYFIELD color table to zero—page table
B3C9 95F2 STA PFOCOLOR,X
B3CB CA DEX
B3CC 10F8 BPL LOOP060B

Figure 5. INITIALIZE Subroutine Without Loop Jamming (Excerpt)

The reason is the drawing order or “graphics pri-
ority” of the bit-mapped graphics and the Players
(sprites). It is controlled by the PRIOR ($D01B) hard-
ware register.

During regular flight, see Figure 9 (left), PRIOR
($D01B) has a value of $11. This arranges the dis-
played elements in the following order, from front to
back:

e Players 0-4 (photon torpedoes, Zylon ships,

e Bit-mapped graphics (stars, cross hairs)

e Background.

This arrangement is fine for the stars as they are
bit-mapped graphics and need to appear behind the
photon torpedoes and the Zylon ships, but this ar-
rangement applies also to the cross hairs — causing
the glitch.

During docking, see Figure 9 (right), PRIOR
($D01B) has a value of $14. This arranges the dis-
played elements the following order, from front to
back:

e Player 4 (transfer vessel)

e Bit-mapped graphics (stars, cross hairs)
e Players 0-3 (starbase, ...)

e Background.

15

This time the arrangement is fine for the cross
hairs as they are bit-mapped graphics and need to
appear in front of the starbase, but this arrangement
also applies to the stars. In addition, the Player of
the white transfer vessel correctly appears in front
of the bit-mapped stars, but also in front of the bit-
mapped cross hairs.

Fixing these glitches is hardly possible, as the
display hardware does not allow for a finer control
of graphics priorities for individual Players.

2.6 A Mysterious Finding

A simple instruction at location $A175 contained
the most mysterious finding in the game’s code.
The disassembler reported the following instruction,
which is equivalent to STA $0067,X. (ISVBISYNC has
a value of $67.)

A175 9D6700 STA ISVBISYNC,X

The object code assembled from this instruction
is unusual as its address operand was assembled
as a 16-bit address and not as an 8-bit zero-page
address. Standard 6502 assemblers would always
generate shorter object code, producing 9567 (STA
$67,X) instead of 9D6700 and saving a byte.

In my reverse engineered source code, the only
way to reproduce the original object code was the
following:

10

12

14

16

18

20

10

12

;x*%x Header text of Long—Range Scan view (shares spaces with following header) =

AOF8 00006C6F LRSHEADER .BYTE $00,$00,%6C, $6F , $6E,

AOFC 6E670072

$67,%00,$72 ; ‘¢ LONG RANGE SCAN’’

A100 616E6765 .BYTE $61,$6E,$67,$65,$00,$73,%$63,$61
A104 00736361
A108 6E .BYTE $6E
;xxx Header text of Aft view (shares spaces with following header) sk s sk * %
A109 00000000 AFTHEADER .BYTE $00,$00,$00,$00,$00,$00,%61,$66 ; *°* AFT VIEW

A10D 00006166

A111 74007669 .BYTE $74,$00,$76,%69,3$65,

Al1l1l5 65770000
A119 00 .BYTE $00

$77,$00,$00

;#xx Header text of Galactic Chart vIew s sk sk sk ok osk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o Ok sk ok R Ok ok o Ok ok ok ok

A11A 00000067 GCHEADER .BYTE $00,$00,%00,%67,%61,

All1E 616C6163

A122 74696300 .BYTE 874 ,%$69,%63,3%00,8%63,

A126 63686172
A12A 74000000 .BYTE $74,$00,$00,3%00

$6C, $61,863 ; ¢ GALACTIC CHART “f

$68 ,$61 ,$72

Figure 6. Header Texts at $AOF8

A6D1 A9FF VBIHNDLR LDA #$FF H
AT15 4C4BA7 SKIP046 JMP JUMPO004

AT18 48 DLSTHNDLR PHA

AT74B 68 JUMPO004 PLA

A74C AS8 TAY

A74D 68 PLA

ATAE AA TAX

AT4F 68 PLA H
A750 40 RTI 5

Start of Vertical Blank Interrupt handler

; End of Vertical Blank Interrupt handler

Start of Display List Interrupt handler

Restore registers

End of Display List Interrupt Handler

Figure 7. VBIHNDLR and DLSTHNDLR Handlers Share Exit Code

; HACK: Fake STA ISVBISYNC,X with 16b addr
A175 9D .BYTE $9D
A176 6700 .WORD ISVBISYNC

I speculated for a long time whether this strange
assembler output indicated that the object code of
the original ROM cartridge was produced with a
non-standard 6502 assembler. I have heard that
Atari’s in-house development systems ran on PDP-
11 hardware. Luckily, the month after I finished
my reverse engineering effort, the original STAR
RAIDERS source code re-surfaced.” To my aston-
ishment it uses exactly the same “hack” to repro-
duce the three-byte form of the STA ISVBISYNC,X
instruction:

A175 9D .BYTE $9D ; STA ABS,X
A176 67 00 .WORD PAGEO ; STA PAGEO0,X (ABSOLUTE)

Unfortunately the comments do not give a clue
why this pattern was chosen. After quite some time

it made click: The instruction STA ISVBISYNC,X is
used in a loop which iterates the CPU’s X register
from 0 to 255 to clear memory. By using this instruc-
tion with a 16-bit address (“indexed” mode operand)
memory from $0067 to $0166 is cleared. Had the
code been using the same operation with an 8-bit ad-
dress (“indexed, zero-page” mode operand), memory
from $0067 to $00FF would have been cleared, then
the indexed address would have wrapped back to
$0000 clearing memory $0000 to $0066, effectively
overwriting already initialized memory locations.

2.7 Documenting Star Raiders

Right from the start of reverse engineering STAR
RAIDERS I not only wanted to understand how the
game worked, but I also wanted to document the re-
sult of my effort. But what would be an appropriate
form?

First, I combined the emerging memory map file
with the fledgling assembly language source code in

"https://archive.org/details/AtariStarRaidersSourceCode

unzip pocorgtfol3.pdf StarRaidersOrig.pdf

16

M=

Figure 9. Photon torpedo in front of cross hairs and a starbase behind the stars!

order to work with just one file. Then, I switched
the source code format to that of MAC/65, a well-
known and powerful macro assembler for the Atari
8-bit Home Computer System. I also planned, at
some then distant point in the future, to assemble
the finished source code with this assembler on an
8-bit Atari.

Another major influence on the emerging docu-
mentation was the Atari BASIC Source Book, which
I came across by accident®. It reproduced the com-
plete, commented assembly language source code of
the 8 KB Atari BASIC interpreter cartridge, a truly
non-trivial piece of software. But what was more:
The source code was accompanied by several chap-
ters of text that explained in increasing detail its
concepts and architecture, that is, how Atari BASIC
actually worked. Deeply impressed, I decided on
the spot that my reverse engineered STAR RAIDERS
source code should be documented at the same level
of detail.

The overall documentation structure for the
source code, which I ended up with was fourfold: On
the lowest level, end-of-line comments documented
the functionality of individual instructions. On the
next level, line comments explained groups of in-
structions. One level higher still, comments com-

posed of several paragraphs introduced each sub-
routine. These paragraphs provided a summary of
the subroutine’s implementation and a description
of all input and output parameters, including the
valid value ranges, if possible. On the highest level,
I added the memory map to the source code as a
handy reference. I also planned to add some chap-
ters on the game’s general concepts and overall ar-
chitecture, just like the Atari BASIC Source Book
had done. Unfortunately, I had to drop that idea
due to lack of time. I also felt that the detailed sub-
routine documentation was quite sufficient. How-
ever, I did add sections on the 3D coordinate system
and the position and velocity vectors to the source
code as a tip of the hat to the Atari BASIC Source
Book.

After T was well into reverse engineering STAR
RAIDERS, slowly adding bits and pieces of informa-
tion to the raw disassembly of the STAR RAIDERS
ROM and fleshing out the ever growing documen-
tation, I started to struggle with establishing a con-
sistent and uniform terminology for the documenta-
tion (Is it “asteroid,” “meteorite,” or “meteor”™? “Ex-
plosion bits,” “explosion debris,” or “explosion frag-
ments”? “Gun sights” or “cross hairs”?) A look into
the STAR RAIDERS instruction manual clarified only

8The Atari BASIC Source Book by Wilkinson, O’Brien, and Laughton. A COMPUTE! publication.

17

a painfully small amount of cases. Incidentally, it
also contradicted itself as it called the enemies “Cy-
lons” while the game called them “Zylons,” such as
in the message “SHIP DESTROYED BY ZYLON FIRE.”

But I was not only after uniform documenta-
tion, I also wanted to unify the symbol names of
the source code. For example, I had created a
hodge-podge of color-related symbol names, which
contained fragments such as “COL,” “CLR,” “COLR,”
and “COLOR.” To make matters worse, color-related
symbol names containing “COL” could be confused
with symbol names related to (pixel) columns. The
same occurred with symbol names related