
E
v
a
n
A
.
S
u
l
t
a
n
i
k

M
a
s
t
e
r
’
s
T
h
e
s
i
s

A
pril,

2006

Master’s Thesis

Enabling

Multi-Agent

Coordination in

Stochastic

Peer-to-Peer

Environments

Evan A. Sultanik

A Thesis
Submitted to the Faculty of Drexel University
in partial fulfillment of the requirements for the
degree of
Master of Science in Computer Science

This thesis presents techniques that enable multi-agent coordination in
peer-to-peer environments such as mobile ad-hoc networks (MANETs).
Although MANETs are increasingly used to support mobile, networked
computing in many civil and military applications, very few methods ex-
ist for distributed multi-agent coordination in such a paradigm. The
coordination problem can be decomposed into two sub-problems: the
problem of developing a local belief of the global state, thereby allowing
for formation of local preferences, and the problem of using the local
preferences to distributedly find local policies that satisfy a global opti-
mum. We address the former problem in the domain of service discovery
on peer-to-peer networks, and the latter in the domain of distributed
task scheduling. Due to the hardware requirements and unpredictabil-
ity of wireless networks, however, a simulated environment in which to
compare agent-based algorithms and perform controlled experiments is
first required. To address this need I present the Macro Agent Transport
Event-based Simulator (MATES), a novel application-layer simulator cre-
ated to investigate the behavior of distributed agent-based systems run-
ning atop dynamic peer-to-peer networks and MANETs. MATES was
implemented not to simulate a specific agent framework, but to provide
a generic, easily extendible environment for mobile agent-based system
testing. MATES is used for empirical validation of the algorithms pre-
sented in this thesis. Next, I propose a technique for mobile service
discovery on MANETs using mobile agents, along with a model of the
system that provides a performance profile for time-critical reasoning on
the discovery process. I show that the model of the system is highly
correlated to the ground truth. The service discovery procedure can be
used to either automate or augment the process of modeling the world
in a language such as C tæms. A mapping of a subset of C tæms
to an equivalent distributed constraint optimization problem (DCOP) is
presented. We provide a proof that our subset of C tæms has not been
trivialized (i.e., finding the optimal schedule is still NP-Hard), validate
the approach using MATES and the DCOP algorithm Adopt, and propose
domain bounding techniques for improving the e�ciency of this process
by up to 60%.

Committee:

William C. Regli

Pragnesh Jay Modi

Moshe Kam

'

&

$

%

Enabling Multi-Agent Coordination

in Stochastic Peer-to-Peer

Environments

Evan A. Sultanik

A Thesis
Submitted to the Faculty of Drexel University

in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science

c� Copyright 2006 Evan A. Sultanik
Copying and use (herein “Redistribution”) of this document is permitted provided that the
following conditions are met:

• This document may not be modified in any respect without specific prior written
permission from the Contributors to this document (herein “Contributors”).

• Redistributions must retain the above copyright notice, incorporate all of the conditions
set forth in this license, as well as incorporate the disclaimer(s) herein.

• Neither the name of Drexel University nor the names of the Contributors may be used
to endorse or promote any artifacts or other products derived from this document
without specific prior written permission from the Contributors.

• This document may not be redistributed for profit without specific prior written per-
mission from the Contributors.

• This document is provided by the Regents and Contributors “as is” and any express
or implied warranties, including, but not limited to, the implied warranties of mer-
chantability and fitness for a particular purpose are disclaimed. In no event shall
the Regents and Contributors be liable for any direct, indirect, incidental, special,
exemplary, or consequential damages (including, but not limited to, procurement of
substitute goods or services; loss of profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability, or tort (including
negligence or otherwise) arising in any way out of the use of this document, even if
advised of the possibility of such damage.

• Nothing in this license document shall preclude Contributor, Evan A. Sultanik, from
distributing this document as deemed fit or deriving a “profit” or any form of money
as the result of the preparation or distribution of this document.

iii

Dedications

This thesis is dedicated to my grandparents Ann & Sol Sultanik and Vivian &
Byron Clyman for their sacrifices and support, without which this thesis would
not exist.

v

Acknowledgements

First and foremost, I must thank William C. Regli for having the patience and
foresight in guiding me into the world of academic research five years ago. In
many respects Moshe Kam and Pragnesh Jay Modi were also my advisors, for
whom I must equally thank for donating their time and expertise.

Several people have critiqued portions and/or drafts of this thesis, includ-
ing Bill Regli, P. Jay Modi, Nadya Belov, Joe Kopena, and Max Peysakhov,
to whom I owe thanks for their time and input. I would also like to thank
David Dorsey, Chris Dugan, Joe Kopena, Rob Lass, Andrew Mroczkowski, and
Max Peysakhov for their use of and comments on my implementation of the
Macro Agent Transport Event-based Simulator.

Most of all I must thank Nadya Belov for taking care of everything else
going on in my life during the void that was the completion of this thesis.

This text was typeset using LATEX [31], which was built atop TEX [27]. The
bibliography was automatically generated using BibTEX. Typing and editing
were done using a combination of Emacs and Vim on Linux-based computers.
All figures were produced in either Xfig or Dia, and all graphs were rendered
using Gnuplot. This thesis would have been less polished and æsthetically
pleasing had it not been for these tools.

Contents

Abstract xi

1 Introduction 1
1.1 Motivation . 2
1.2 Approach . 3

1.2.1 Evaluating Multi-Agent Systems on Dynamic Peer-to-Peer
Networks . 4

1.2.2 Developing a Belief of the Global State 4
1.2.3 Converging Upon the Global Schedule 4

1.3 Organization of the Thesis . 6

2 Background 7
2.1 Agents . 7
2.2 Peer-to-Peer Networks . 7
2.3 Service-Based Computing . 8
2.4 Coordination . 9
2.5 Related Work . 10

3 Tools for Investigating Multi-Agent Coordination 13
3.1 Motivation and Design Goals . 13
3.2 Architecture . 14

3.2.1 Hosts and Agents . 14
3.2.2 Simulated Time . 15
3.2.3 Host Mobility Model . 18
3.2.4 Link Connectivity Model 18
3.2.5 Data Transport Model . 18
3.2.6 Routing . 18

3.3 Implementation . 18
3.4 Scalability . 20
3.5 Examples & Validation . 24
3.6 Limitations . 25

4 Coping with Local Knowledge 27

vi

CONTENTS vii

4.1 Introduction . 27
4.2 Technical Approach . 30

4.2.1 Random Walking Mobile Agents 31
4.2.2 Predicting Agent Arrival at a Host 32
4.2.3 Mathematics of Random Walks 33
4.2.4 Approximating ⌫ . 34
4.2.5 Accounting for ⌧ . 34
4.2.6 Constructing (N, s, h) 35
4.2.7 Using (N, s, h) . 36

4.3 Empirical Validation . 37
4.3.1 Accuracy of PageRank. 37
4.3.2 Verification of Services’ Distribution. 38
4.3.3 Accuracy of (N, s, h). 38

4.4 Discussion . 38

5 Multi-Agent Coordination 43
5.1 Formalization . 44

5.1.1 Modeling Planning Problems 44
5.1.2 Distributed Constraint Optimization 45
5.1.3 Analysis . 46

5.2 Technical Approach . 47
5.2.1 Mapping C tæms to a DCOP 47
5.2.2 Näıve Domain Bounding 49
5.2.3 Bound Propagation . 50
5.2.4 Constraint Propagation 50

5.3 Results . 52

6 Conclusions 59
6.1 Evaluating Multi-Agent Systems

on Dynamic Peer-to-Peer Networks 59
6.1.1 Estimating Global State 59
6.1.2 Multi-Agent Coordination 60
6.1.3 Coordinating Agents in Stochastic Peer-to-Peer Environ-

ments . 61

A Notation and Nomenclature 63

List of Tables

5.1 E�ciency of Algorithm 8 at reducing average domain size and
state space size, in terms of solubility. 56

5.2 Solubility statistics for di↵erent complexities ofC tæms instances.
All simulations were conducted with four agents. None of the
problems bounded using the näıve method were soluble. * This
is the default configuration for the C tæms scenario generator. . 57

viii

List of Figures

1.1 Given a model of the world represented in C tæms, map this
to a DCOP whose solution is guaranteed to lead to a feasible
schedule (with bounds on optimality). 5

3.1 The simulator cycle. 15

3.2 Flow of control of the behavioral model in a simulation of two
hosts and three agents. MATES first allocates execution time
to h1, which sub-allocates time to its agents a1 and a2. When
each agent reaches a blocking function, control returns to the
simulation kernel. When h1 is finished, h2 will be given execution
time. Finally, h2 allocates execution time to its agent a3. 16

3.3 Screen shot of MATES’ GUI, simulating a mobile ad hoc network
of 25 hosts. 19

3.4 Computation time for simulating 500 quanta as a function of the
number of agents and the number of hosts. 20

3.5 Memory required for simulating 500 quanta as a function of the
number of agents and the number of hosts. 21

3.6 Topological statistics recorded over the experiments. When the
hosts are bounded in a physical space, the average topology di-
ameter remains constant while the average host degree increases
linearly. 22

3.7 Computation time and memory usage as a function of average
host degree. Note that both values are highly correlated to host
degree. 23

4.1 A scenario showing web services on a MANET. Agents on Host
A require services o↵ered by each provider Si. 28

4.2 An agent randomly walking a peer-to-peer network. 31

4.3 Profile of (N, s, h). 36

ix

x LIST OF FIGURES

4.4 (a) depicts the error in the predicted agent frequency, ⌫, in static
and dynamic networks over a 100 quanta (second) simulation
using the PageRank algorithm. The error converges to 0 over
time. (b) compares the estimator given in Equation (4.2) to the
actual value over the course of a simulation. The means are
highly correlated. 39

4.5 Prediction, (N, s, h), and actual agent visitation probabilities
for a 300000 quanta (simulated seconds) experiment. 40

5.1 An example task hierarchy, (a), with associated representation
in C tæms, (b), along with our mapping to a DCOP, (c). 48

5.2 Feasible start times for methodsM1 andM2 both before, (a), and
after, (b), constraint propagation. If the C tæms model declares
M1 as enablingM2, (a), then constraint propagation will increase
the lower bound on the start time of M2 to the earliest start time
of M1 plus the expected duration of M1, (b). 52

Abstract
Enabling Multi-Agent Coordination

in Stochastic Peer-to-Peer Environments

Evan A. Sultanik

Advisor: William C. Regli, Ph. D.

This thesis presents techniques that enable multi-agent coordination in peer-
to-peer environments such as mobile ad-hoc networks (MANETs). Although
MANETs are increasingly used to support mobile, networked computing in
many civil and military applications, very few methods exist for distributed
multi-agent coordination in such a paradigm. The coordination problem can
be decomposed into two sub-problems: the problem of developing a local be-
lief of the global state, thereby allowing for formation of local preferences, and
the problem of using the local preferences to distributedly find local policies
that satisfy a global optimum. We address the former problem in the domain
of service discovery on peer-to-peer networks, and the latter in the domain
of distributed task scheduling. Due to the hardware requirements and unpre-
dictability of wireless networks, however, a simulated environment in which to
compare agent-based algorithms and perform controlled experiments is first re-
quired. To address this need I present the Macro Agent Transport Event-based
Simulator (MATES), a novel application-layer simulator created to investigate
the behavior of distributed agent-based systems running atop dynamic peer-
to-peer networks and MANETs. MATES was implemented not to simulate
a specific agent framework, but to provide a generic, easily extendible envi-
ronment for mobile agent-based system testing. MATES is used for empirical
validation of the algorithms presented in this thesis. Next, I propose a tech-
nique for mobile service discovery on MANETs using mobile agents, along with
a model of the system that provides a performance profile for time-critical rea-
soning on the discovery process. I show that the model of the system is highly
correlated to the ground truth. The service discovery procedure can be used to
either automate or augment the process of modeling the world in a language
such as C tæms. A mapping of a subset of C tæms to an equivalent distributed
constraint optimization problem (DCOP) is presented. We provide a proof that
our subset of C tæms has not been trivialized (i.e., finding the optimal sched-
ule is still NP-Hard), validate the approach using MATES and the DCOP
algorithm Adopt, and propose domain bounding techniques for improving the
e�ciency of this process by up to 60%.

Chapter 1
“

Scientific discovery and scientific

knowledge have been achieved only

by those who have gone in pursuit

of it without any practical purpose

whatsoever in view.

”—Max Karl Ernst Ludwig Planck

Introduction

Consider, for a moment, the following thought experiment. You are a dele-
gate on the floor of the United Nations on November 24th, 1945; there are over
fifty delegates, each originating from a di↵erent social context, trying to ratify
their charter. The majority of the delegates’ native languages are not mutually
intelligible, necessitating translation. Although no dedicated translators are
available, the delegates can proceed by translating for each other. The Belgian
representative can translate between French, German and Dutch, the Ukrainian
between Polish, Ukrainian, and Russian, and so on. It is noon; the delegates
wish to adjourn for a meal and therefore must agree on a time to reconvene.
Each delegate has his own personal commitments and constraints, so a unani-
mous decision must be made. In order to voice your preferences, you want to
know the current time. For example, you know that you have a meeting at
12:30 and therefore will not be able to reconvene until 13:00, at the earliest.
The only language you speak is Spanish, you neither know whom else speaks
Spanish nor do you know that the Dutch delegate is the only one with a watch.
Therefore, you ask, «¿Que hora es?» This is understood by the multilingual
Mexican representative and repeated as “What is the time?” The multilingual
South African representative understands this and repeats it in Zulu and—the
key—Netherlands:

”
Hoe laat is het?” The Dutch delegate understands the

question and the process is reversed to relay the time.
The problem posed by this scenario is not one of natural language processing,

nor is it one of translation; it is that the answer is outdated—and therefore
invalid—by the time you receive it. Given your outdated information, how can
you develop a belief of the world-state (i.e., the time)? Furthermore, what
happens if you do not receive an answer? The lack of a reply could have four
implications:

1. You have not waited long enough for an answer;

1

2 Chapter 1.1: Motivation

2. No one else knows the answer;

3. Someone else knows the answer, but there does not exist a chain of dele-
gates to relay the question to those that know the answer; or

4. There does not exist a chain of delegates to relay the answer back to the
questioner.

The problems that arise in this scenario are not distinct to the dubious
domain of distributedly-deciphered diplomacy; they have striking parallels in
other disciplines, such as Computer Science. In the setting of a system of
multiple, autonomous, intelligent agents, these are the questions for which my
thesis provides answers:

• How can the agents discern which of the implications from a lack of a
reply are true?

• To what extent is it possible to develop an a priori estimate of the ex-
pected time until a reply?

• More importantly, once everyone has enough information about the global
state to develop a local preference, how can the agents coordinate to
converge upon the globally-optimal decision (in which violations of the
agents’ local preferences is minimized)?

• How can multi-agent algorithms designed to answer the above problems
be empirically validated and compared?

1.1 Motivation

The proliferation of mobile and handheld computing (i.e., laptops, PDAs, and
smart phones) has propelled distributed computing into mainstream society.
Consider coordinating a night at the theater with one’s friends, each using his
or her PDA for collaboration. Like the delegates in the thought experiment,
complete communication between peers is not ensured. For example, one’s
PDA might not be in radio range of—and will therefore be incommunicado
with—another’s. Just as the network of communication among the delegates
was defined by language barriers, the peer-to-peer network of PDAs might be
defined by radio connectivity.

As a more pertinent example, first responders (e.g., triage, police, fire fight-
ers) at the scene of a natural disaster cannot expect to have any sort of existing
communications infrastructure; their devices must be able to create a mobile
ad hoc network (MANET) [69]. In this domain, a police o�cer, while prevent-
ing looting, might encounter a building that is emitting smoke from its top
floor. The o�cer neither knows if there are victims trapped inside, nor does
he or she know the severity of the fire. The o�cer immediately alerts the fire

Chapter 1.2: Approach 3

department and emergency medical units, using the MANET. Both the fire de-
partment and the medical units need to prioritize the situation (i.e., develop
a local preference) before any coordination can occur, especially if the demand
for firefighters and medics is greater than the supply. Developing such a local
preference might require assessing the current state of existing emergencies. For
example, the availability of fire fighters might depend upon the location and
degree of control of existing fires, and on a related note, the location and state
of the fire fighting infrastructure (e.g., trucks, oxygen tanks, firefighters, and
water). The globally-optimal decision, however, cannot solely be based upon
the local assessments made by each department. For example, even if both the
fire department and triage units have enough resources to immediately address
the situation, it might be more beneficial for the triage units to be temporarily
diverted elsewhere since the building must be deemed safe by the firefighters
before the medics can enter.

The coordinated management of inter-dependent plans or schedules belong-
ing to di↵erent agents is an important, complex, real-world problem. Diverse
application domains such as disaster rescue, small-team reconnaissance, secu-
rity patrolling and others require human teams to schedule their tasks and
activities in coordination with one another. This is currently di�cult because
it requires search over an overwhelming number of decisions and actions under
stressful conditions. It is envisioned that automated planning and scheduling
processes in the form of intelligent software agents operating on portable com-
puting hardware can assist human teams in such domains. The problem is
inherently a distributed one; an agent that administers the schedule of a hu-
man user must e↵ectively manage the interdependencies between its schedule
and the schedules of other users by exchanging information and coordinating
with other agents. No single agent has a global view of the problem; instead,
each must make local planning and scheduling decisions through collaboration
with other agents to ensure a high quality global schedule.

1.2 Approach

Due to the hardware requirements and unpredictability of wireless networks, a
simulated environment in which to compare agent-based algorithms and per-
form controlled experiments is required before any empirical investigation into
multi-agent coordination can occur. Therefore, we present the Macro Agent
Transport Event-based Simulator (MATES) [63] to address this need. The
problem of multi-agent coordination itself can be decomposed into two distinct
processes: developing a local belief of the global state and using one’s local
knowledge to converge on an optimal schedule. The following sections highlight
our approach to both developing and validating solutions to these problems.

4 Chapter 1.2: Approach

1.2.1 Evaluating Multi-Agent Systems on Dynamic Peer-
to-Peer Networks

In developing multi-agent systems on peer-to-peer networks [62], I have experi-
enced firsthand numerous problems that arise from working with a live testbed.
Hardware failures and system misconfiguration can cost valuable research time.
Although producing agent-based technologies for a functional wireless network
has always been my goal, I have recognized the need for a simulated environ-
ment in which to compare agent-based algorithms and perform controlled exper-
iments. To address this need I have developed the MATES: an application-layer
simulator created to investigate the behavior of distributed agent-based systems
running atop dynamic peer-to-peer networks and MANETs. Given such a goal,
MATES was implemented not to simulate any specific agent framework, but to
provide a generic, easily extendible environment for mobile agent-based system
testing. MATES is used for empirical validation of the algorithms presented
herein.

1.2.2 Developing a Belief of the Global State

In order to develop one’s local preferences, one might need a belief of the global
state of the world. Recall from the United Nations scenario that the delegates
might need to know the time—an element of non-local state—in order to de-
cide upon their local preference for a time to reconvene. In order to distribute
state information throughout the network, I present a bottom-up method that
exploits the emergent behavior of mobile service discovery agents that stochasti-
cally sample the hosts on a wireless network. These agents act like bees, working
to “pollenate” the network with state information; using a model of behavior
derived from the theory of random walks, the agents develop a belief about the
state of network services and propagate these beliefs to the hosts as they travel
the network. Furthermore, this model can be used as a performance profile for
time-critical reasoning. A fixed-memory randomized method for approximat-
ing the location of a service in a stochastic environment with a probabilistic
certainty in a fixed amount of time is proposed by augmenting the discovery
agents’ knowledge with domain and network semantics. Empirical analyses are
provided to show the accuracy of the technique on simulated wireless networks.

1.2.3 Converging Upon the Global Schedule

Once one has enough global state information to develop a model of the world
and thereby a local preference, there is still the problem of coordinating to con-
verge upon the global optimum. First, we present a subset of the Coordinators
Task Analysis Environmental Modeling and Simulation (C tæms) modeling
language [10] that is expressive enough to represent these types of coordination
and distributed scheduling problems. C tæms is a general language (based on

Chapter 1.2: Approach 5

Estimate
Global
State

C tæms DCOP Schedule

7!

<taems> ::= <version>

{ <agent> | <node> | <nle> |

<schedule> | <changes> |

<additions> | <failures> }

[<attributes>]

<node> ::= <taskgroup> | <task> | <method>

<nle> ::= <enables> | <disables> |

<facilitates> | <hinders>

<identifier> ::= <character> { <alphanumeric> }

<literal> ::= <string> | <float> | <integer>

<string> ::= ’’’’ { <alphanumeric> | ’ ’ } ’’’’

<distribution> ::= <value> <prob> { <value> <prob> }

<pos-int-distribution> ::= <pos-int-value> <prob>

{ <pos-int-value> <prob> }

<value> ::= <float>

<pos-int-value> ::= <pos-integer>

<prob> ::= <float>

<alphanumeric> ::= <character> | <digit> | ’-’

<character> ::= ’a’..’z’ | ’A’..’Z’ | ’_’

<float> ::= <integer> ’.’ <digit> { <digit> }

<integer> ::= [’-’] <pos-integer> | <digit>

<pos-integer> ::= ’1’..’9’ { <digit> }

<digit> ::= ’0’..’9’

<visible-to> ::= (visible_to <agentname> { <agentname> })

<version> ::= (spec_version <literal>)

<attributes> ::= (spec_attributes { <attribute> })

.

.

.

?
7! (A, V,D, F,↵,�)

?

<schedule> ::= (spec_schedule

(schedule_elements

{ <scheduleelem> }

)

[<attributes>]

)

<scheduleelem> ::= (<methodname>

(start_time <integer>)

[<attributes>]

)

Figure 1.1: Given a model of the world represented in C tæms, map this to a
DCOP whose solution is guaranteed to lead to a feasible schedule (with bounds
on optimality).

the original tæms language [20]) that was jointly designed by several multi-
agent systems researchers explicitly for multiagent task scheduling problems.
We prove that our subset of C tæms has not been reduced to a point that it
has become trivial; solving the scheduling problems represented by our subset
of C tæms is NP-Hard. Next, we propose a distributed constraint reasoning
approach for solving problems expressed in our subset of the C tæms model-
ing language [10]. Our methodology is one of problem transformation in which
we create a mapping that converts a C tæms instance into an instance of the
Distributed Constraint Optimization Problem (DCOP) [41], as depicted in Fig-
ure 1.1. DCOP was devised to model constraint reasoning problems where
several agents must communicate to ensure that solutions are globally optimal.

We demonstrate three key advantages of our constraint based approach.
First, we provide a mapping that automatically transforms a C tæms prob-
lem into an equivalent DCOP. That is, we show that the optimal solution to a
given C tæms problem is also the optimal solution to the DCOP obtained by
applying our problem transformation mapping, i.e., our mapping preserves the
problem exactly. Second, arguably one of the primary advantages of adopting
a constraint based approach is the ability to apply existing constraint propaga-
tion techniques from the constraint programming literature. Thus, we leverage
our problem transformation by applying constraint propagation pre-processing
techniques to perform domain pruning to significantly reduce the search space.
We demonstrate a 96% reduction in state space size for a set of benchmark
problems. Finally, another advantage of our approach is that by mapping the
C tæms problem into a DCOP, we are able to immediately apply existing so-
lution techniques for DCOP to the C tæms problem domain. We report on
experiments using the Adopt algorithm [41] which is one of the state-of-the-
art DCOP algorithms that finds guaranteed optimal solutions through asyn-

6 Chapter 1.3: Organization of the Thesis

chronous peer-to-peer message passing between agents with worst-case polyno-
mial space requirements.

1.3 Organization of the Thesis

The remainder of this thesis is organized as follows:

§2 Provides background on the various concepts upon which this thesis is
built and overviews related research;

§A Defines the notation and nomenclature used for formalization;

§3 Outlines the simulator, MATES, created for investigating multi-agent col-
laboration on MANETS and subsequently used for empirical validation
of our algorithms;

§4 Develops our bottom-up approach for distributing state information through-
out a dynamic peer-to-peer network;

§5 Formalizes and validates our top-down approach to mapping coordination
problems to DCOPs; and

§6 Concludes on my research and presents areas for future investigation.

Chapter 2

“

Today’s scientists have substituted

mathematics for experiments, and

they wander o↵ through equation

after equation, and eventually build

a structure which has no relation to

reality.

”—Nikola Tesla
“Radio Power Will Revolutionize the
World.”
Modern Mechanics and Inventions, July,
1934.

Background

2.1 Agents

According to the Agent Systems Reference Model [9], “An agent is a situated
computational process with one or more of the following properties: autonomy,
proactivity and interactivity.” In the context of this thesis, an agent may also
be assumed to have the ability to migrate. Migration occurs when an agent
halts its execution, saves its state, and is transferred to another host at which
it resumes execution. A “host,” therefore, is any node on the network capable
of receiving and executing agents.

2.2 Peer-to-Peer Networks

A network is considered “peer-to-peer”when its constituent nodes have no con-
cept of a “server” or “client;” there exists a peering protocol that allows for com-
munication between any pair of nodes. Additional constraints may be placed
upon who can talk to whom, as in MANETs. A MANET’s network topology
is defined by the radio connectivity of the nodes, which is usually dictated by
the hosts’ spatial interrelationships. The structure of such networks inherently
imposes the restriction of communication to one’s “neighbors.” Communication
over multiple hops in the network is di�cult or impossible without facilities
such as ad hoc routing [49, 23, 48, 24]. Recent research has invested the use
of mobile agents for routing in ad hoc networks [38, 40, 57], establishing the

7

8 Chapter 2.3: Service-Based Computing

utility of further investigation in this area [39]. Most methods rely on us-
ing an agent’s frequency of host visitation to predict the network topology.
Significantly less work exists on discovering the current locations of services
throughout MANETs—in other words, the “service topology.”

MANETs are vastly di↵erent from enterprise networks. Nodes on a MANET
communicate over wireless links, with each node acting as a router, forwarding
messages. Network management tasks, such as keeping the route tables up to
date, is a significantly harder problem on MANETs, necessitating ad-hoc rout-
ing protocols that add complexity and network overhead to the system. Band-
width is typically severely limited. Throughput in IEEE 802.11b MANETs,
the most common civil standard, is often less than 50% of the theoretical max-
imum of 11 Mbps [70]. In contrast, traditional switched wired networks can
reach rates upward of 100 Mbps. Further, limited link capacities are accompa-
nied by low connectivity between nodes. As network hosts move through their
environment, the likelihood of a wireless signal being obscured by buildings,
cars, and other obstacles increases. Network routes are constantly changing
and end-to-end connectivity is rare [2]. Host devices are also diverse, ranging
from powerful laptops to resource-limited handheld devices.

2.3 Service-Based Computing

As networks and software become increasingly heterogeneous, the problem of
classifying the assets provided by and required for each entity is becoming non-
trivial. The service-oriented computing paradigm addresses this issue by ab-
stracting the assets in a network. This abstraction allows for matching between
agents and services based on semantic value, as opposed to simple, name-based
addressing.

A service-oriented computing framework is generally comprised of five basic
elements relating to services:

1. Service Description: Ontology. The service description element is
perhaps the most important, as it dictates the expressiveness of the en-
tire framework. Known in the philosophical and artificial intelligence
communities as ontology, the service description should be formal enough
for automated reasoning to be carried out, while abstract enough to be
human-readable. Theoretically, multiple agents with the same ontologi-
cal description of a service should equally be able to inter-communicate
about/with that service.

2. Advertisement Most service frameworks have a mechanism by which
services can advertise themselves when available. Advertisement usu-
ally takes the form of a network broadcast/multicast; therefore this is
not present in all frameworks, as bottlenecks such as bandwidth are pro-
hibitive.

Chapter 2.4: Coordination 9

3. Discovery On small, flat, fully-connected networks, service discovery is a
somewhat trivial problem. However, when networks get excessively large
and complex, service discovery is an exceedingly di�cult problem. There
are generally three steps in the service discovery process:

(a) An agent formulates a description of the desired service;

(b) Either the agent or the framework creates a matching function for
the desired description; and

(c) Once a match is found, the framework provides a mechanism through
which the agent can talk to the service provider.

4. Invocation Although not always implemented in existing frameworks,
the invocation element provides abstracted, transparent communication
between the agent and service provider.

5. Composition An automated mechanism able to combine multiple ser-
vices into one.

2.4 Coordination

DCOPs [41] are a subclass of distributed decision processes in which a set of
agents are responsible for assigning the values of their respective variables sub-
ject to a set of constraints. The objective of a DCOP is for the agents to
assign values to their variables such that the cost incurred by the constraints
is either minimized or maximized. Several distributed algorithms for DCOP
currently exist in the literature including distributed dynamic programming
(DPOP [50]), cooperative mediation (OptAPO [37]) and asynchronous back-
tracking (Adopt [41, 1, 14, 66, 36, 17]).

Constraint propagation is a general family of techniques that exploits a
constraint-based representation for consistency checking to reduce problem search
space, often in a pre-processing phase. Bartak provides a survey of the general
topic in [5]. Arguably one of the primary advantages of adopting a constraint
based approach is the ability to apply constraint propagation techniques such as
node, arc or path consistency. As such, constraint propagation is well-studied
with several algorithms available that vary in complexity and the amount of
pre-processing computation and memory required. The first arc consistency
algorithms were formalized by Mackworth [35] including the widely used AC-3
algorithm. Bessiere, et al., improve on average-case e�ciency with the AC-6 and
AC-7 algorithms [7, 8]. More recently, researchers have introduced distributed
methods for arc consistency processing including the DisAC-9 algorithm [22]
and the DMAC protocol [59].

10 Chapter 2.5: Related Work

2.5 Related Work

Issues concerning pervasive computing environments appear close the problems
of distributing state information and service discovery in dynamic environments.
New service discovery architectures and protocols are being developed to accom-
modate the limitations of pervasive computing, such as [13] which has opted for
intelligent forwarding of service requests over the typical advertisement registry.

Due to the proliferation of mobile applications and peer-to-peer file sharing
technology, significant research has been made in the area of dynamic networks.
Service discovery architectures exist for such networks [32, 25], some specifically
designed for MANETs [30], however, these often require services to register
themselves when available and are therefore not suitable for distributing global
state information. Search techniques have also been applied to the problem of
localization, such as Content-Addressable Networks (CANs) [56, 61], sometimes
using agent-based techniques [18, 43]. However, search-based approaches often
assume that agents can arbitrarily migrate between hosts in the network [4].
Furthermore, CANs and Distributed Hash Tables assume that the index and
data elements are fixed. None of these approaches directly address the problem
of locating mobile services.

Research in service matching and discovery includes a popular matching al-
gorithm that defines a match in varying degrees of success while also using a
Semantic Web language to extend the capabilities of a commonly used web ser-
vice repository, UDDI1 [45]. The number of inputs and outputs shared between
the service request and the service advertisement creates a convenient prefer-
ence hierarchy for service matches. [71] adds flexibility to the service matching
process by allowing the description of a service’s behavior, rather than just
inputs and outputs. Additionally, it utilizes a logic language to exploit the
inheritance relationships within an ontology to increase the possibility of a use-
ful match. Sometimes, to achieve a desired result, many services and service
processes may be involved. In this situation, [68] describes an HTN planning
process to perform composite process models and [44] uses petri nets to analyze
specific maintenance and safety conditions before automatically composing a
service.

Other work incorporates both service discovery and process execution to
foster the complete automation of tasks. The work in [47] suggests a service
architecture composed of a DAML-S/UDDI Matchmaker, with the planning
and service execution performed by an autonomous agent. The agent uses the
Matchmaker to find desired services, checks provided schedules for date and
time conflicts, and then uses the DAML-S virtual machine to help interpret
information retrieved during Web service invocation. This system represents a
typical service oriented architecture: a central registry for maintaining service
advertisements, paired with appropriate parsing and inferring mechanisms, as

1http://www.uddi.org/

Chapter 2.5: Related Work 11

well as a querying agent acting on behalf of a user or company. Similar full
Semantic Web systems have been implemented in various ways, including using
a broker agent architecture as in [46].

Numerous techniques have been employed to address the problem of multi-
agent coordination and scheduling (and various subproblems thereof). Musliner,
et al., map C tæms to a Markov decision process which is then used to gen-
erate a policy dictating when and how agents execute methods [42]. Musliner,
et al., also propose distributed constraint satisfaction as a method for nego-
tiating a feasible schedule by maximizing previously-calculated local expected
qualities [42]. Smith, et al., address the problem of dynamic schedule revision
(due to changes in the model) using Simple Temporal Networks [60]. Phelps
and Rye address this same problem through a domain-independent implemen-
tation of Generalized Partial Global Planning, in which proxy methods allow
for distributed approximation of the performance characteristics of potentially
complex tasks [55].

Chapter 3

“

In agent-based simulation,

formulation does not require

quantification.

”—Scott Moss
At the Sixth International Workshop
on Multi-Agent-Based Simulation

Tools for Investigating
Multi-Agent Coordination

This chapter is organized as follows: we present our motivation for developing
MATES in §3.1, followed by a description of MATES’ architecture in §3.2.
§3.3 presents implementation details for MATES. Empirical validation of the
scalability of MATES is presented in §3.4. Examples of how MATES has been
used and validation of its models are presented in §3.5. We outline limitations of
the current implementation, as well as mention possible improvements, in §3.6.

3.1 Motivation and Design Goals

The domain of mobile agency on ad hoc networks is unique, in that it falls
between the fields of artificial intelligence and networking. There already exist
many simulators from each field, such as MASON [34], for agent simulation,
and the almost ubiquitous NS-2 [67] and OPNET1 for network simulation.

The authors considered extending an existing simulator for use with dy-
namic peer-to-peer networks, however none allowed for their specific design
goals. The first design goal was that the simulator should only model the net-
work at a macroscopic level, allowing for computation time to be diverted to
the agent model. Secondly, developing agents for the simulator should be anal-
ogous to development for a real-world agent architecture, such as EMAA [33]
or COUGAAR [6].

The first design goal eliminated virtually all network simulators, as their
purpose is to model low level interaction (even down to the physical layer).
While there exist extensions to NS-2 for allowing simulation of mobile agents,

1
http://www.opnet.com/

13

14 Chapter 3.2: Architecture

such as AgentJ2 and a module by Shah [58], e�ciency of the simulation itself is
not a specific design goal. For example, Shah’s extension to NS-2 was designed
with the intent of investigating the e�cacy of mobility as a design paradigm,
not as a general-purpose mobile agent simulation environment. In general,
network simulators are primarily used to compare low-layer processes, such as
routing algorithms. As such, most network simulators do not provide su�cient
hooks for implementing application-layer protocols. Modeling an agent system
at such a resolution has proven to create a fair amount of overhead. Therefore,
MATES was created to approximate the low-layer processes to divert more
resources to the agent model. This concession of accuracy mitigates the problem
of e�ciency; further analysis is provided in §3.5.

A huge disparity between agent simulators and actual multi-agent systems
is their scheduling model: the means by which agents are allotted processing
time. Real-world multi-agent systems (especially mobile agent systems) almost
always provide each agent with its own thread of execution, allowing for agents
to run concurrently. In these systems, agents need not compartmentalize their
execution into blocks over which the system will iterate. Likewise, agents need
not schedule future execution times with the agent architecture. Instead, since
each agent is encapsulated by a thread, the operating system or virtual machine
can allot processing time. Most all agent simulators take an opposite approach.
Simulators tend to provide each agent with a hook that gets called once every
simulator iteration. This makes modeling processing constraints unintuitive.
For example, it is not immediately clear how one would model a network of
heterogeneous hosts, each having drastically di↵erent computational power. An
agent currently hosted on a PDA might only have a tenth the computational
capability of an agent hosted on a laptop. MATES’ solution to this problem is
presented in §3.2.2.

3.2 Architecture

MATES is based upon four core models used for simulation: Host Mobility,
Link Connectivity, Transport, and Agent Behavior. Each model can be thought
of as a conglomeration or approximation of an associated “block” of the OSI
model [72]. During every cycle of the simulator, each of the models is succes-
sively applied to the domain, as in Figure 3.1.

3.2.1 Hosts and Agents

MATES models two primary entities: hosts and agents. Unlike some agent
architectures, such as EMAA, MATES does not provide a thread of execution
for servers. Instead, static agents (i.e., agents that never migrate) can be used.

Each agent can query its current host for the following percepts:

2
http://pf.itd.nrl.navy.mil/srss/

Chapter 3.2: Architecture 15

Change node
locations

Mobility
Model

Recalculate
Topology

Link Model

Migrate Agents

Transport
Model

Execute Agents

Behavior
Model

AgentsNetwork MigrationHosts

Figure 3.1: The simulator cycle.

• handles to any other agents at the current host;

• geographic location of the current host; and

• network addresses of the neighboring hosts.

It is also important to note that agents do not exist on any host while in transit
between hosts. Furthermore, agent migration can fail, for example, if the source
and destination hosts move out of range mid-transmit, or if a timeout occurs.
In the event of a migration failure, simulation parameters can dictate whether
an agent returns to the host from which it was sent or dies. The latter case can
be useful for modeling network packets as agents [65].

3.2.2 Simulated Time

Time in MATES is modeled using iterations that represent simulated time
quanta. The simulator iterates over the quanta, allotting processing time to
each of the hosts. Hosts, in turn, may divide their allotted time to any agents
they are hosting. Similar approaches are taken by most other agent simulators.

MATES di↵erentiates its approach by additionally providing each agent with
a separate thread of execution. This does not mean that agents execute concur-
rently; the threads are used to allow for agents to suspend their execution while
waiting on blocking operations, such as sleeping and migrating between hosts.
When the blocking function is complete, the agent’s thread may then be started
again, continuing execution at the same point at which it suspended. The flow
of control while simulating the behavioral model is pictured in Figure 3.2. The
approach of preserving agent execution state throughout an entire simulation
is similar to that of Java in Simulated Time [3].

16 Chapter 3.2: Architecture

Hosth1

Code

Blocking Func.

Agent a1

MATES
(Simulation Kernel)

Hosth2

Agent a2

Code

Blocking Func.

Code

Blocking Func.

Agent a3

Figure 3.2: Flow of control of the behavioral model in a simulation of two
hosts and three agents. MATES first allocates execution time to h1, which
sub-allocates time to its agents a1 and a2. When each agent reaches a blocking
function, control returns to the simulation kernel. When h1 is finished, h2 will
be given execution time. Finally, h2 allocates execution time to its agent a3.

Suspension of agent execution while preserving execution state allows for a
familiar agent development environment and greatly increases the transparency
of the simulator. This imparts a sense of “continued execution” from the point
of view of the programmer. For example, consider Algorithm 1. This algorithm
describes an agent that randomly walks the network, printing “Hello World” at
each host visited. Note that lines 3 and 5 of the code are blocking. Ideally, one
would like other agents on a host to acquire processing time once the currently-
executing agent goes to sleep or migrates.

If implemented in a traditional agent simulator, the Hello-World-Agent
would have a function that would be called once every simulator iteration.
Therefore, to have the same functionality as in Algorithm 1, the iteration func-
tion would require a mechanism such as a finite state machine to keep track
of the agent’s state, as in Algorithm 2. In MATES, however, each agent’s
main execution function is called only once: when the agent is instantiated.
In MATES, one could implement the Hello-World-Agent’s functionality in
the exact same procedural form as in Algorithm 1. MATES accommodates for
this by halting an agent’s thread when it reaches a blocking function (i.e. a
sleep, migration, or yield).

Chapter 3.2: Architecture 17

Algorithm 1 Hello-World-Agent
1: while True do
2: Print(“Hello World”)
3: Sleep(1000)
4: N Get-Neighboring-Hosts()
5: Migrate-To-Host(Random(N))
6: end while

Algorithm 2 Hello-World-Agent-Finite-State-Machine

1: if State = Sleeping ^ Time() � SleepUntil then
2: State StartMigration
3: end if
4: if State = Migrating ^ Migration-Complete() = True then
5: State ;
6: end if
7: if State = ; then
8: Print(“Hello World”)
9: State Sleeping

10: SleepUntil Time() + 1000
11: end if
12: if State = StartMigration then
13: N Get-Neighboring-Hosts()
14: Start-Migration-To-Host(Random(N))
15: State Migrating
16: end if

18 Chapter 3.3: Implementation

3.2.3 Host Mobility Model

Every host has a mobility model that dictates the way in which it moves. Dur-
ing every successive quanta of simulated time, each host’s mobility model can
dictate its location anywhere within the bounds of the simulated environment
(which are a simulation parameter). In most cases, mobility models will move
the host to a position adjacent to its current, however this is not a requirement.

3.2.4 Link Connectivity Model

The simulation itself has a link connectivity model that defines the conditions
under which two hosts have a connection. This allows for simulation of both
static and ad hoc networks. In the former case, the link connectivity model is
basically a lookup table for connections. In the latter, link connectivity is a
function of hosts’ locations. The link connectivity model also determines the
links’ quality: a metric roughly corresponding to signal strength in a wireless
network.

3.2.5 Data Transport Model

The simulation also has a data transport model that defines the amount of time
required for an entity to be sent over a specific link. Here, “time” is actually
referring to simulator quanta. This will usually be a function of the link quality
and the size of the entity.

3.2.6 Routing

Agents are assumed to route themselves, in theActive Networking paradigm [65].
However, it is possible to implement a routing protocol in the simulator. This
can be accomplished by having a static agent on each host responsible for car-
rying out the routing tasks. When an agent needs to know the next hop in a
route, it will query its host for a handle to the “routing agent,” and query that
agent for the route table.

3.3 Implementation

MATES is free, open-source, and is hosted at http://mates.sourceforge.

net/. The current version of MATES has been implemented in Java, chosen
primarily for its ease of its class polymorphism, reflection, and extension. Also,
many of the current leading agent architectures are implemented in Java [33,
6]. A screen shot of our implementation of MATES is provided in Figure 3.3.
The implementation provides built-in host mobility, link connectivity, and data
transport models, however each of these can be overridden.

Chapter 3.3: Implementation 19

Figure 3.3: Screen shot of MATES’ GUI, simulating a mobile ad hoc network
of 25 hosts.

Variations of the Random Walk Mobility Model and City Section Mobility
Model [12] have been implemented. The host mobility model is passed a handle
to the link connectivity model during host placement. This enables the host
mobility model to move hosts in such a way to preserve a certain topology. For
example, one might never want the topology to be disconnected. Therefore,
the host mobility model can predetermine if a specific host-repositioning will
disconnect the network.

The default link connectivity model emulates the exact connectivity model
for ad hoc network graph generation [3]. Connections are determined by the
Euclidean distance between hosts. Each host has a default radio range of 300
meters, which can vary on a host-to-host basis. Also note that, since hosts can
have varying radio ranges, the resulting network topology is a directed graph.
This means the fact that host X can “hear” host Y does not imply that host Y
can hear host X.

The default data transport model dictates that transit times are calculated
with an inverse linear relationship to link quality. Therefore, agent transit times
have an exponential relationship to the Euclidean distance between hosts. By
default, the maximum transit time is a constant number of quanta; all tra�c
takes the same amount of time to transmit. However, each agent may implement
an interface such that it can dynamically define its own transit time, allowing
for simulation of agents of di↵erent size.

20 Chapter 3.4: Scalability

0
50

100
150

200
250Number of Hosts 0

50
100

150
200

250

Number of Agents
0
1
2
3
4
5
6
7
8

C
P
U

T
im

e
(s
ec
on

d
s)

Figure 3.4: Computation time for simulating 500 quanta as a function of the
number of agents and the number of hosts.

3.4 Scalability

The two primary parameters that dictate the MATES’ computation and mem-
ory complexities are the number of hosts and the number of agents in simulation.
We profile these complexities by varying the parameters over a simulation of
500 quanta. The hosts moved according to the City Section Mobility Model [12]
and each agent performed a random walk on the network. The domain was re-
stricted to a 300 meter square, and hosts’ radio ranges were set to 100 meters.
The data were collected on a computer with dual AMD Opteron 240 processors,
1GB of RAM, and running Linux kernel 2.6.7-gentoo-r9. Blackdown-1.4.2-
rc1 was used as the Java runtime environment.

The results for the computational complexity of running the experiment are
given in Figure 3.4. The times recorded in the figure are the amount of CPU
time that elapsed between the start and end of the experiment; the time required
for MATES to initialize was not included. The data indicate that computation
time scales linearly with respect to the number of agents in the simulation, and
scales polynomially with respect to the number of hosts in the simulation.

The results for the memory-space complexity of running the experiment are
given in Figure 3.5. These data are inherently error-prone, as the Java virtual
machine will often allocate more memory than it actually requires. The data
indicate that memory usage scales linearly with respect to the number of agents

Chapter 3.4: Scalability 21

0
50

100
150

200
250Number of Hosts 0

50
100

150
200

250

Number of Agents
0

1

2

3

4

5

6

7

M
em

or
y
(M

eg
ab

yt
es
)

Figure 3.5: Memory required for simulating 500 quanta as a function of the
number of agents and the number of hosts.

in the simulation, and scales polynomially with respect to the number of hosts
in the simulation.

Intuitively, the complexity of the simulation is not only dependent on the
number of hosts, but also the topology of the network. For example, a com-
pletely disconnected network (with no edges) will simulate much faster than a
completely connected network. Therefore, we also investigate the correlation
between the complexity of the simulation and the edge density. Figure 3.6 shows
the average topology diameter and average host degree over the experiments as
a function of the number of hosts. Since the mobility of the hosts are constrained
to a 300 meter square, adding more hosts linearly increases the average host
degree. Likewise, once the square becomes saturated with hosts (which occurs
at about 45 hosts) the average topology diameter becomes constant.

Figure 3.7 shows the computation time and memory usage for the exper-
iments with respect to the average host degree. Both computation time and
memory usage are highly correlated, however the computation time data have
very low variance. This indicates that the computational complexity is much
higher with respect to the number of edges in the network than with respect to
the number of agents.

22 Chapter 3.4: Scalability

0

20

40

60

80

100

0 50 100 150 200 250

N
u
m
b
er

of
E
d
ge
s

Number of Hosts

Average Topology Diameter
Average Host Degree

Figure 3.6: Topological statistics recorded over the experiments. When the
hosts are bounded in a physical space, the average topology diameter remains
constant while the average host degree increases linearly.

Chapter 3.4: Scalability 23

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

S
ec
on

d
s

M
eg
ab

yt
es

Average Host Degree

Computation Time
Memory Usage

Figure 3.7: Computation time and memory usage as a function of average
host degree. Note that both values are highly correlated to host degree.

24 Chapter 3.5: Examples & Validation

3.5 Examples & Validation

MATES has already been used for experimentation in various areas of both
artificial intelligence and networks research. In these experiments, simulated
data from MATES has shown to correlate strongly to equivalent experiments
conducted on live MANET [53]. Networking topics studied with MATES in-
clude MANET power management and localization (based on partial GPS in-
formation and signal strength). The remainder of this section outlines artificial
intelligence research conducted using MATES.

Agent Population Management. One of the first experiments conducted
using MATES entailed analysis of an ant algorithm for estimating and managing
the optimal number and location of services in a multi-agent system deployed
over a MANET [53]. Specifically, service availability3 was measured under
variation of:

• number of hosts on the network;

• link models; and

• network mobility models.

The experiments were conducted both with and without the ant-inspired man-
aging services. MATES’ random number generation architecture allowed for
the exact same sequence of host movement during both control and variable
experiments.

The same experiments were then conducted on the Secure Wireless Agent
Testbed [62], running on iPAQ PDAs. The agents were implemented using Lock-
heed Martin’s Extendible Mobile Agent Architecture (EMAA) [33]. MATES’
“continued execution” architecture allowed for agent code to be ported almost
directly from MATES to EMAA. As detailed in [53], the experimental results
from MATES mirrored the real-world empirical results from the SWAT almost
exactly.

Agent Ecosystems. MATES has also been used to simulate agent ecosys-
tems, in which the supply and demand for virtual food is used to optimize the
stability of an agent system [52, 54]. In other words,

• Agents collect food as a reward for completing a task.

• Agents consume food regularly to stay alive.

• Agents that exhaust their food supply die.

3“Service availability” is a metric for a host’s ability to e�ciently utilize a service on the
network.

Chapter 3.6: Limitations 25

• An abundance of food causes new agents to spawn.

A formal model of this system was created, and was validated under MATES.

Service-Based Computing. MATES is one of the few environments avail-
able in which one is able to extensively test service-based computing and the
agent paradigm in the domain of dynamic networks. Because of this, MATES
was chosen to simulate and study the feasibility of service-based computing on
disruption and delay-prone networks [29]. Multiple service discovery methods
were compared on simulated satellite relay, interplanetary, and mobile ad-hoc
networks. It was shown that, even in optimal network conditions, e↵ective
agents must perceive, reason, and act on network state.

3.6 Limitations

A major limitation of MATES, in its current implementation, is its atomic
representation of time. This means that all user-created simulation components
(i.e. agents) must agree on a mapping from quanta to “simulated time.”

MATES was not designed for large networks, and as such does not make
an e↵ort to aggregate or parallelize homogeneous entities and tasks. With
that said, MATES has exponential computational complexity with respect to
the number of agents and hosts, with memory usage scaling linearly. This
undesirable performance, however, is neither a function of MATES’ design nor
implementation; it is due to the complexity of the underlying problem.

Chapter 4

“

It is startling to realize how much

unbelief is necessary to make belief

possible. What we know as blind

faith is sustained by innumerable

unbeliefs.

”—Eric Ho↵er
Section 56, The True Believer

Coping with Local
Knowledge

4.1 Introduction

The focus of this chapter is the support for distribution of global state information—
enabling service discovery within a Service Oriented Architecture (SOA)—on
emerging wireless networks.

Example of Service Oriented Architectures on MANETs. Figure 4.1
illustrates the stark di↵erences between a MANET and the enterprise com-
puting scenarios that are typically the doman of SOAs. An application on
host A requires services available from service providers S0, S1, S2, and S3.
Initially, the host labeled “A” is indirectly connected to S1 through S0, as in
Figure 4.1(a). As the scenario progresses in Figure 4.1(b) and the hosts on the
MANET continue their random walk, providers S0 and S1 move in opposite di-
rections. By Figure 4.1(c), the situation has reversed and S1 is now the closest
service provider. In Figure 4.1(d) host A loses connectivity to S0 completely.
By discovering available services and intelligently choosing service providers,
an agent may more e�ciently utilize resources and recover from errors. In this
example, agents from A would switch from S0 to S1 when it becomes the closest
provider.

As an example of an important application domain, the synthetic aircraft
world of Tambe et al [64] a�rms the problem of service discovery for multi-
agent planning systems. A group of agent-driven helicopters are deployed on
a battlefield; one helicopter “disappears.” In this case “disappearance” might
mean “over a ridge,”“out of communication range,” or “destroyed.” How do the

27

28 Chapter 4.1: Introduction

(a) Host A is connected to S1
through S0.

(b) The service providers move in
opposite directions.

(c) S0 is no longer directly con-
nected to Host A.

(d) Host A is no longer connected
to S0.

Figure 4.1: A scenario showing web services on a MANET. Agents on Host A
require services o↵ered by each provider Si.

Chapter 4.1: Introduction 29

remaining agents decide if a node, or service on that node, has become unavail-
able and re-planning is required? Existing work assumes that such information
is instantaneously announced to all nodes and agents, a process which fails to
take into account the realities of information propagation on peer-to-peer and
wireless networks. In the synthetic aircraft example, knowledge and interven-
tion of a human agent is required to alert the agent system that the helicopter
has disappeared. Furthermore, recent research has shown that no fixed memory
deterministic algorithm can locate a service in a network in a fixed amount of
time [26]. We shall use the synthetic aircraft domain as a running example in
this chapter.

In some domains services will be provided by mobile agents whose location
in the network changes over time. For example, a certificate authority might
be required for secure communication between helicopters in the synthetic air-
craft domain. This server could be encapsulated by a mobile agent capable of
reasoning about the network [51]. The agent might then continuously migrate
to portions of the network with low volatility. For instance, the agent might
migrate to helicopters less likely to be removed from the network. To improve
performance and minimize latency, heuristics for such migration might include
proximity to the geographic center of the group or association with the center
of the network topology graph. Therefore, a method for pro-actively tracking
the location of services in dynamic networks is required.

Research Approach and Contributions. This chapter presents an ap-
proach to service discovery in MANET environments. The current literature
on SOAs does not yet address these issues directly, nor has there been any
substantial theoretical or empirical studies of approaches to solve the discovery
problem for SOAs on MANETs.

On non-fault tolerant, peer-to-peer and ad hoc wireless networks, web ser-
vices may become unavailable due to network partitioning, tra�c congestion,
or attack—thus inhibiting service discovery, binding and composition. The
approach in this chapter exploits the emergent behavior of mobile service dis-
covery agents that stochastically sample the hosts on a wireless network. Using
a model of behavior derived from the theory of random walks, these agents
develop a belief about the state of network services and propagate these beliefs
to the hosts as they travel the network. Furthermore, this model can be used
as a performance profile for time-critical reasoning. By augmenting the dis-
covery agents’ knowledge with domain and network semantics, a fixed-memory
randomized method for approximating the location of a service in a stochastic
environment with a probabilistic certainty in a fixed amount of time is pro-
posed. Empirical analyses are provided to show the accuracy of the technique
on simulated wireless networks.

To address the unpredictability and constrained resources of a MANET,
communicating applications must be able to determine and adapt to available

30 Chapter 4.2: Technical Approach

resources. Network-aware mobile agents are uniquely well suited to this task [28,
15]. Such agents collect and transmit data and messages, making informed
decisions in transit based on properties such as network topology. services
may be used by such an agent to define, discover, and utilize other agents
providing services necessary in accomplishing some task. This enables an agent
to conserve resources by finding the most accessible service providers and recover
from failures such as network partitions that disconnect services.

Chapter Organization: This chapter is organized as follows. §4.2 presents
the technical formulation of the approach, where §4.2.1–§4.2.6 provide the the-
oretical model. §4.2.7 proposes examples of using the model. §4.3 empirically
validates the approach through simulation in MATES. §4.4 discusses the ap-
proach, including possible applications and domains, limitations, and future
work.

4.2 Technical Approach

This section presents an approach to accurate, on-line service discovery using
a set of service monitoring agents, A, randomly walking a set of hosts, H, on
a peer-to-peer network. As these agents traverse the network, they construct
and update a model of service locations. This knowledge is deposited on each
host for use by other agents.

As seen in Figure 4.2, each agent’s walk is dictated by the underlying network
topology. Algorithmically, this method is very simple, exploiting the emergent
behavior of the agent collective. As the service discovery agents randomly walk
the network, they remember the time and host at which each service was seen.
Other agents in the system can then query the service discovery agents for
their beliefs of service locations. However, there is no guarantee that all service
discovery agents visiting a host have encountered a service recently (or even at
all) during their walks. Furthermore, since the migration patterns of the service
discovery agents are stochastic, there is no deterministic guarantee as to when a
service discovery agent will visit a specific host. These problems are addressed
by the model proposed in the remainder of this chapter.

This approach has four important advantages over alternatives, such as näıve
message passing or broadcasting:

1. Very little network bandwidth is used, and bandwidth usage scales linearly
with respect to the number of discovery agents. This is an important
issue for resource-constrained mobile devices and large-scale peer-to-peer
networks.

2. Mobile code technology allows for straightforward deployment on het-
erogenous networks.

Chapter 4.2: Technical Approach 31

Network Layer

Agent Layer

Figure 4.2: An agent randomly walking a peer-to-peer network.

3. Services only register with a local listing, not with centralized registrars.

4. Properties of random walks are relatively easy to model and perform in-
ferences upon.

This work develops a mathematical model for the behavior of these agents,
allowing for time-critical reasoning and probabilistic inferences to be made
about the system. We use properties of Markov chains to model the proba-
bility that an agent will visit a specific host, a binomial distribution to model
the probability that an agent has seen a service, and another binomial distri-
bution to develop an expected value for the number of agents that will visit a
specific host in some amount of time.

4.2.1 Random Walking Mobile Agents

The agents’ task environment, a dynamic peer-to-peer network, is stochastic,
dynamic, and continuous. There exists a delay between actual topology changes
and the propagation of knowledge of these changes throughout the network. The
discovery agents do not have a goal, per se, their sole purpose is to randomly
walk the network and gather information. Their percepts are comprised solely
of the set of services available at the current host, Sh, and the set of hosts
neighboring the current host, {x 2 H|Eh,x > 0} (where E ✓ H ⇥H is the set
of edges in the topology and the notation Ex,y denotes the weight of the edge
from node x to node y). Edge weights represent transition probabilities between
hosts in the network; for most networks these will be uniform. However, ad hoc
wireless networks might correlate edge weights to link quality between hosts to
avoid agent migration over unreliable links.

32 Chapter 4.2: Technical Approach

Agents’ actions are comprised solely of migrating to a neighbor host from
their current host. At each host agents query for services and store their col-
lected data in memory (along with a timestamp). The agents’ itineraries are
dictated by the network. Successor hosts for migration are randomly selected
from available neighboring hosts.

4.2.2 Predicting Agent Arrival at a Host

The frequency of agent visits can be predicted by developing a function, :
N ⇥ S ⇥ H ! [0, 1], for the probability that at least one agent a 2 A with
knowledge of a service s 2 S will visit a specific host h 2 H in a duration of time
�. N is the set of all possible local state descriptions, where each N 2 N is a
local state description represented by a tuple containing the following elements:

� - length of the time interval;
⌫ : R! [0, 1] - function returning the probability that at least one discovery

agent will visit h in a duration of time;
⌘ - number of instances of the service s;

|H| - cardinality of the set of hosts;
|A| - cardinality of the set of agents;
` - average time needed for an agent to hop between neighbors;

and
⌧ - maximum desired amount of time since an agent last saw the

service.
 (N, s, h) is therefore a probability distribution over the space N for a given
service and host. We decompose (N, s, h) into three component distributions:

⇡h probability that a discovery agent will be at host h at any given
time;

⌫̂ an approximation of ⌫; and
P (n � 1) probability that a discovery agent will see at least 1 instance of

the service s in time ⌧ .

These distributions need not be calculated a priori. A method for approxi-
mating ⇡h is given in §4.2.3 which is then used to develop ⌫̂ in §4.2.4. P (n � 1)
is then defined in §4.2.5. Finally, the approximation of (N, s, h) is constructed
from these component distributions in §4.2.6.

Intuitively, the larger |A| and the smaller |H| and ` the more often agents
will visit hosts. ⌧ is meant to be a measure of the“age”of each agent’s knowledge
of the services. Since global time synchronization is a di�cult problem in some
domains, ⌧ can also be replaced by a heuristic that approximates the age of the
agent’s data. For example, the number of hosts the agent has visited since it
last saw an instance of the service could be used.

Chapter 4.2: Technical Approach 33

4.2.3 Mathematics of Random Walks

Random walks along graphs can be modeled as finite Markov chains, and there-
fore both share many of the same properties. Gkantsidis, et al., experimen-
tally showed that, when searching for items occurring frequently in a network,
random walks perform better than flooding (for the same number of network
messages) in certain cases [21]. In order to predict the frequency of randomly-
walking agents visiting a specific host, though, we must first develop a proba-
bility that an agent will be on a specific host at any time.

The PageRank algorithm [11] determines the probability that a random
web surfer will be on a given web page at any time. PageRank employs Markov
chains to model random walks along the graph of the Internet. One can there-
fore use PageRank to determine the probability that an agent randomly walking
a network will be visiting a specific host at any given time. The first eigenvec-
tor, ~⇡, of a graph’s adjacency matrix, J , is fundamentally intertwined with the
stationarity of the graph. The eigenvector ~⇡ corresponds to the eigenvalue �1
such that ~⇡J = �1~⇡. PageRank exploits this fact and provides a means for ap-
proximating the primary right eigenvector of an adjacency matrix. We present
Algorithm 3 as an adaptation of PageRank for our domain.

Algorithm 3 Agent-Visitation-Probabilities(J, d, iterations)

Require: J is the adjacency matrix representation of the network, d is a real
number damping factor in the range [0, 1] (usually set to 0.85), iterations is
the number of iterations to run, and all elements of ~⇡ are initialized to 1

|H| .

Ensure: ~⇡, the primary right eigenvector of J , contains the probabilities that
a random agent will be on any node
for i = 1 to iterations do
for j = 1 to |H| do
sum 0
for k = 1 to |H| do
if Jk,j > 0 then
links |{x | (1 x |H|) ^ (Jk,x > 0)}|
if links > 0 then
sum sum+ ~⇡k ÷ links

end if
end if

end for
~⇡j (1� d) + d· sum

end for
end for

~⇡h (i.e., the element of the vector ~⇡ corresponding to host h) is then the
probability that an agent a 2 A is on a specific host h 2 H at any given time.

34 Chapter 4.2: Technical Approach

4.2.4 Approximating ⌫

⌫ is defined as a function returning the probability that at least one service
discovery agent will visit the host in time �. By definition, one can use ~⇡ to
develop an estimator of ⌫:

⌫̂(0) 7! ~⇡h when |A| = 1 , (4.1)

however, a binomial distribution must be used to define ⌫̂ for all values of � and
|A|:

⌫̂(�) 7! 1�
⇣
1�

⇣
1� (1� ~⇡h)

|A|
⌘⌘�

= 1� (1� ~⇡h)
� |A| . (4.2)

In other words, ⌫̂(�) is 1.0 minus the probability that none of the |A| agents
will visit in time �.

Unfortunately, it is not su�cient to define the mapping of (N, s, h) solely
based upon ⌫̂ because not all agents that visit a host have recent enough data
about the service being located. Therefore, a function defining the probability
that the random agent visiting host h will have a recent-enough1 memory of
service s is needed.

4.2.5 Accounting for ⌧

⌫ provides a prediction mechanism for the number of random-walking agents
that will visit a host. However, ⌫ does not take into account the fact that
these agents may not have recently seen an instance of the service s. ⌧ is an
element of the state description that dictates the maximum allowable amount
of time since a service discovery agent has seen the service. Therefore, ⌧ must
be incorporated into the probability.

Let H 0
✓ H be the set of hosts that an agent visits in time ⌧ and S0

✓ S be
the set of services an agent sees in time ⌧ . The expected value for the number
of hosts the agent will visit is given by:

h|H 0
|i =

j⌧
`

k
. (4.3)

It is assumed that, due to the mobility of the network and its associated random
topology, the probability of a randomly-walking agent visiting a host with a
service is normally distributed. This claim is empirically investigated in §4.3.2.
We can then say ⌘

|H| is the probability that an instance of the service exists at
a randomly-selected host. The probability that an agent walking the network

1By “recent-enough” we mean “of age less than or equal to ⌧ .”

Chapter 4.2: Technical Approach 35

will encounter an instance of s in time ⌧ can then be modeled as a binomial
distribution of |H 0

| trials:

P
�
n
��
|H 0

|

�
=

✓
|H 0

|

n

◆✓
⌘

|H|

◆n✓
1�

⌘

|H|

◆|H0|�n

(4.4)

where n is the number of instances of s discovered:

n = |{x|x 2 S0
^ x = s}| . (4.5)

Summing (4.4) over all n where n � 1:

P (n � 1) =

|H0|X

i=1

 ✓
|H 0

|

i

◆✓
⌘

|H|

◆i✓
1�

⌘

|H|

◆|H0|�i
!

= 1�

✓
1�

⌘

|H|

◆
b

⌧
` c

. (4.6)

P (n � 1) = P (9x, x 2 S0
^ x = s) is the probability that an agent has seen at

least one instance of the service s while walking the network in time ⌧ .

4.2.6 Constructing (N, s, h)

Given the probability that a service discovery agent will visit a host, ⌫, and
the probability that a service discovery agent will have seen an instance of the
service being sought, P (n � 1), we can define the mapping of (N, s, h).

We assume the event that an agent has seen an instance of service s is
independent of the agent visiting host h. Let A0

✓ A be the set of service
discovery agents with knowledge of s that visit h in time �. In actuality, will
be binary: either we received an useful agent during the interval � or we did
not:

 (N, s, h) 7!

⇢
1.0, A0

6= ;
0, A0 = ;

.

Since the emptiness of A0 is unknown a priori, and we really want the probability
that the event will occur, we need to derive the probability that A0

6= ;. This
is trivial when � = 0:

 (N, s, h) 7! P (A0
6= ;)

7! P (n � 1) ⌫.

To extend this mapping for all values of �, we need another binomial distribution
over � trials:

36 Chapter 4.2: Technical Approach

0

1

0

1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

(N

,s
,h

)

t

⌧

(N

,s
,h

)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Figure 4.3: Profile of (N, s, h).

 (N, s, h) = P (A0
6= ;)

=
�X

i=1

✓✓
�

i

◆
(P (n � 1) ⌫)i (1� P (n � 1) ⌫)��i

◆
(4.7)

= 1�

1� ⌫ + ⌫

✓
1�

⌘

|H|

◆
b

⌧
` c
!�

. (4.8)

Note that although Equation 4.7 uses summation and the binomial coe�cient
on the variable �, this is strictly for elucidation of our derivation; the resulting
expression in Equation 4.8 does not preclude any of the parameters—including
�—from being continuous. The profile of (N, s, h), as a function of � and ⌧ ,
is given in Figure 4.3.

The function (N, s, h) is useful for predicting the number of randomly
walking agents that have seen service s in time ⌧ and will also visit host h in
time �.

4.2.7 Using (N, s, h)

Take the synthetic aircraft domain as an example; suppose an agent needs to
locate a service in a fixed amount of time. If s does not exist, the agent will
need to re-plan. If the service is only available from the helicopter that has
disappeared, the agent will waste its time trying to look for the service. Using
 (N, s, h), the agent can predict if it will hear from any of the service discovery

Chapter 4.3: Empirical Validation 37

agents in time �. If (N, s, h) returns a low probability, the agent will know to
immediately re-plan without waiting for any of the service-discovery agents to
arrive.

Now let us consider the same scenario, but in terms of service composition.
In this case, the service being sought is really composed of a set of services, S =
{s1, s2, . . . , sn}. Since the events of receiving location information about each
of the constituent services in S can be assumed independent, the availability
of S would simply be the product of the individual (N, s, h) probabilities for
each s 2 S.

4.3 Empirical Validation

Network simulation is accomplished using MATES. Variation of the Network
links are determined by the Euclidean distance between hosts. The hosts’ move-
ments are bounded by a 1200x1200 meter box, and each host has a radio range
of 300 meters. At the beginning of each experiment, hosts are placed randomly
in the box and given a random direction. Both agents and instances of the
service s are randomly distributed among the hosts. Every iteration of the time
quanta of the simulation:

1. Each host’s direction is randomly chosen by either maintaining in its cur-
rent heading (with probability 0.6), rotating 45� clockwise (with proba-
bility 0.2), or rotating 45� counter-clockwise (with probability 0.2);

2. hosts move forward one meter in their respective directions;

3. agents not currently in transit migrate from their current host to a randomly-
selected neighbor host (as described in §4.2.1). Agent transit times are
calculated with an inverse exponential relationship to the Euclidean dis-
tance between hosts. The average transit time for agents, `, is 1 iteration;

4. every instance of s is treated as a mobile agent; each service migrates to
a random neighbor host as described above; and

5. every � iterations, each host uses (N, s, h) to develop a probability of a
knowledgeable agent visiting it in the subsequent � iterations. The actual

frequency of knowledgeable agent visits, |A0|
� , is also recorded.

The results we present are from 30 runs of the simulation, 300000 time
quanta each, with 30 hosts, 15 agents, and 3 instances of the service s.

4.3.1 Accuracy of PageRank.

Figure 4.4a illustrates Algorithm 3’s error as it converges to the true stationary
distribution value. In the case of a static network, the algorithm will converge

38 Chapter 4.4: Discussion

monotonically to an error of zero. In the case of a dynamic network, the algo-
rithm tends toward zero, but is not guaranteed to converge due to the changing
topology.

Figure 4.4b illustrates Equation (4.2)’s accuracy in predicting the frequency
of agent visits. One can see that the prediction approximates the actual value
very closely and is also strongly correlated. The average coe�cient of correlation
between these variables over the set of 30 runs is 0.68. The average bias for the
predicted probability is 0.01.

4.3.2 Verification of Services’ Distribution.

The frequency distribution for the number of instances of service s agents saw
was recorded. The Shapiro-Wilk normality test returns a value of 0.5532 for
the experimental distribution (with an infinitesimally small P-value), meaning
the experimental distribution does partially deviate from normality. Nonethe-
less, this result implies that one cannot say that the data are not normally dis-
tributed. The deviation from normality can be explained by the low probability
of an agent seeing an instance of the service; the data are skewed more toward
an F-distribution. However, as demonstrated by the accuracy of (N, s, h) in
Figure 4.5, it is reasonable to assume this distribution is normal.

4.3.3 Accuracy of (N, s, h).

Figure 4.5 illustrates Equation (4.8)’s accuracy in predicting the frequency of
knowledgeable agent visits. One can see that the prediction approximates the
actual value very closely and is also correlated. The average coe�cient of corre-
lation between these variables over the set of 30 runs is 0.60. The average bias
for the predicted probability is -0.03.

4.4 Discussion

Examples of Applying the Technique. The information updates provided
by the service discovery agents can be used to create new capabilities for multi-
agent systems operating on peer-to-peer networks. Examples include:

• Learning availability thresholds, where if a service or host has not been
“seen”by a discovery agent the remaining hosts and agents can (with high
probability) assume that it has become unavailable and re-plan accord-
ingly.

• Network triage, where the disappearance of discovery agents or their lack
of contact with vital network nodes can be used to infer that the network
has been damaged, compromised or segmented.

Chapter 4.4: Discussion 39

-1

-0.5

0

0.5

1

0 20 40 60 80 100

S
ta
ti
on

ar
y
D
is
tr
ib
u
ti
on

E
rr
or

Simulated Time (seconds)

Dynamic Network
Static Network

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20000 40000 60000 80000 100000

P
ro
b
ab

il
it
y

Iteration

Predicted
Ground Truth

(b)

Figure 4.4: (a) depicts the error in the predicted agent frequency, ⌫, in static
and dynamic networks over a 100 quanta (second) simulation using the PageR-
ank algorithm. The error converges to 0 over time. (b) compares the estimator
given in Equation (4.2) to the actual value over the course of a simulation. The
means are highly correlated.

40 Chapter 4.4: Discussion

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0
 50000

 100000
 150000

 200000
 250000

 300000

Probability of Discovering a Service

Sim
ulated Tim

e

Predicted
G

round Truth

Figure 4.5: Prediction, (N, s, h), and actual agent visitation probabilities for
a 300000 quanta (simulated seconds) experiment.

• Time-critical reasoning, where hosts use information provided by discov-
ery agents as a performance profile for how long time-critical functions
might execute if they depend on remote services.

• Optimizing the number of agents, where, given an expected value for ⌫
(which can be calculated using an expected network topology), one can
use Equation (4.8) to compute the optimal number of agents needed to
achieve a required frequency of service discovery agent updates.

Limitations. Elements of the state description, N , can be both variable and
unknown in some domains. Therefore agents might develop beliefs about the
values of these parameters, such as ` and ⌘. Furthermore, there are more
e�cient ways for the agents to traverse the network (i.e. self-avoiding walks).
Research into these alternate techniques is required, however mathematically
modeling them is more complex than with random walks.

Although ⌫ can be defined from ~⇡h, developing a belief of the global network
topology, J , is a di�cult problem on dynamic peer-to-peer networks. Pro-active
routing algorithms for ad hoc networks often define a protocol to propagate this
information, but this is expensive. The amount of memory/bandwidth required
for each network message can in the worst case be O(n2) (to transmit the entire
adjacency matrix). Since computation of (N, s, h) really only requires ~⇡h (not
the entire adjacency matrix J), ~⇡h could be inferred by the observed frequency
of agent visits at host h over a period of time. Research is required to evaluate
this.

Chapter 4.4: Discussion 41

Future Work. Our proposed method for propagating service location infor-
mation throughout the network can be used as a heuristic for mobile agent-based
search. For example, hosts could cache data brought to them by the random
walking service discovery agents. In doing so, each host would develop an in-
dex (or “belief”) of the locations of services. These beliefs will become more
accurate in conjunction with a host’s proximity to the service. Therefore these
beliefs, along with the timestamp of when the agent last saw the service, could
be used as an A* search heuristic when locating the service. Work is needed to
prove the feasibility, admissibility, and accuracy of this heuristic; we are in the
process of using the SWAT to do so.

Further experimentation is required to ascertain the e↵ect of varying pa-
rameters, such as `. In addition, the e↵ect of CPU and network bandwidth
limitations is not clear. Finally, the accuracy of our approach on networks of
heterogeneous hosts is unknown.

Chapter 5

“

Below every tangled hierarchy lies

an inviolate level.

”—Douglas Hofstadter
Gödel, Escher, Bach: an Eternal Golden
Braid

Multi-Agent Coordination

A key step towards addressing the distributed scheduling problem is to devise
appropriate representations. In this chapter, we have three goals in mind. We
desire a representation that

1. captures the problem’s distributed multiagent aspects,

2. gives formal guarantees on solution quality, and

3. is amenable to distributed solving by existing methods.

In regard to the first goal, the Coordinators Task Analysis Environmental
Modeling and Simulation (C tæms) representation [10] is a general language
(based on the original tæms language [20]) that was jointly designed by sev-
eral multiagent systems researchers explicitly for multiagent task scheduling
problems. C tæms is a Hierarchical Task Network (HTN) style representation
where the task nodes in the network have probabilistic utility and duration.
Utility of tasks are aggregated up the hierarchy using Quality Accumulation
Functions (QAFs). The most primitive task nodes are called methods and the
multiagent distributed aspect of the problem is modeled by associating methods
with di↵erent agents. C tæms is an extremely challenging class of scheduling
problem and has been adopted as a common challenge problem domain repre-
sentation for distributed multiagent task scheduling research.

While the level of expressivity of C tæms is required for some domains, it
may not be required for all domains of interest. Also, the expressivity comes
at a cost. It is arguable that the primary concern in the design of the C tæms
language was to comprehensively express the complexities of the distributed
scheduling problem, while less concern was placed on goals two and three enu-
merated above. Indeed, current distributed solution techniques can not be
applied straightforwardly or are unable to provide solution quality guarantees.
Thus, to make progress on this di�cult problem, we begin by contributing a

43

44 Chapter 5.1: Formalization

set of representational compromises for C tæms. In this chapter, we restrict
ourselves to a subset of the C tæms language that retains its distributed multi-
agent nature but abstracts away the probabilistic quality and duration of tasks
by replacing the probability distributions with their expected values. We also
restrict ourselves to summation as the most natural type of QAF. We show that
even this restricted subclass of C tæms problems is NP-Hard.

5.1 Formalization

This section formalizes the notion of a DCOP and specifies the subset ofC tæms
on which we focus. We then analyze this subset, proving that it is su�ciently
complex to remain NP-Hard.

5.1.1 Modeling Planning Problems

C tæms is a derivative of the tæms modeling language [20] and can be used for
representing instances of task domains of the distributed scheduling problem.
Unlike other HTN representations, C tæms emphasizes modeling of the inter-
relationships between tasks more so than those between agents and their envi-
ronment [42]. For the sake of exposition and formalism, we represent C tæms
instances using set theory, whereas the actual specification is a grammar. Our
notation covers a simplified subset of C tæms; specifically, we use expected val-
ues for parameters whereas C tæms, a discrete stochastic modeling language,
uses probability distributions. We represent a C tæms instance as a tuple
(N,M ,T , E,G, µ,�,!), where
A is a set of agents;
M is a set of methods;
T is a set of tasks;
E is a set of “Non-Local E↵ects” (i.e. precedence constraints on execution

time);
G is a special task, G 2 T , known as the “Task Group;”
µ is a function µ : M ! A mapping methods to agents;
� is a function � : M [T ! T [{;} that maps methods and tasks to

their parent task (a method may not be a parent); and
! is a quality accumulation function ! : M [T ! R+

[{0} that returns
the quality of a method or task. For T 2 T , !(T) is usually defined as
a function of the associated qualities of all X 2 ��1(T).

Each M 2M is itself a tuple, (l, u, d), where
l is the earliest start time of the method;
u is a deadline for the method; and
d is the expected duration of the method.

It is assumed that � creates parent-child relationships such that the resulting hi-
erarchy is a tree rooted at G. Note that the range of � ensures that all methods

Chapter 5.1: Formalization 45

are leaves.

Each e 2 E is a function e : (M [T) ⇥ (M [T) ! B mapping pairs of
methods and tasks to a boolean. Let ' : T ⇥ (M [T)! B be a function such
that

'(X,Y) 7! True() �(X) 7! Y,

and let '+ be the transitive closure of '. '+(X,Y) implies that X is in the
subtree rooted at Y . Therefore,

e(X,Y) =) (8X 0, Y 0
| '+(X 0, X) ^X 0 is a method

^ '+(Y 0, Y) ^ Y 0 is a method :

X 0 must have finished executing before Y 0 can start).

In other words, e(X,Y) means that all methods in the subtree rooted at X
must have finished executing before any of the methods in the subtree rooted
at Y may be executed. Other types of Non-Local E↵ects (NLEs) exist within
C tæms, but we will focus on this type of “enables” e↵ect in this chapter. For
each e 2 E, if the transitive closure e+(X,Y) maps to True, X is said to
precede Y in an “NLE chain.”

Note that l u, but l + d might not necessarily be less than or equal
to u. Each T 2 T is defined as a similar tuple, except tasks (as a type of
virtual method aggregator) do not have explicit durations. Also, these bounds
on execution time are inherited from parents. In other words, l�(X) lX and
u�(X) � uX .

A “schedule” is a grammar within the C tæms specification for defining the
chosen start times of methods; it can be formalized as a function s : M ! N0[

{;} mapping methods to start times. A start time of ; means that the method
will not be executed. A feasible schedule obeys both mutex and precedence
constraints (i.e. an agent may not execute more than one method at a time
and all NLEs are obeyed). The objective is to create a feasible schedule that
maximizes !(G).

5.1.2 Distributed Constraint Optimization

A DCOP can be formalized in set-theoretic notation as a tuple (A, V,D , F,↵,�),
where

46 Chapter 5.1: Formalization

A is a set of agents;
V is a set of variables, {v1, v2, . . . , v|V |};
D is a set of domains, {D1, D2, . . . , D|V |}, where each D 2 D is a finite

set containing the feasible values for its associated variable;
F is a set of |V |

2 cost functions, one for each pair of variables, such that
fij : Di ⇥ Dj ! N0 [{1}. Each cost function maps every possible
variable assignment to its associated cost, for all pairs of variables and
for all possible assignments. These functions can also be thought of as
constraints;

↵ is function ↵ : V ! A mapping variables to their associated agent.
↵(vi) 7! aj implies that it is agent aj ’s responsibility to assign the value
of variable vi. Note that it is not necessarily true that ↵ is either an
injection or surjection; and

� is a function � : F ! N0 that aggregates the individual costs. This is
usually accomplished through summation.

The objective of a DCOP is to have each agent assign values to its associated
variables in order to minimize �(F) for a given assignment of the variables1.

5.1.3 Analysis

From Theorem 1 we see that, not only is determining an optimal feasible sched-
ule NP-Hard, but the satisfaction problem of deciding which methods to ex-
ecute and which not to execute is also NP-Hard.

Theorem 1. The optimization problem of finding a feasible schedule with max-
imum !(G) is NP-Hard.

Proof. We will prove this with a reduction from k-coloring of graphs (where
k � 3). Given a graph G = (V,E), create one agent in A for each v 2 V . Create
k methods associated with each agent, one for each of the k colors. Therefore,
(8a 2 A : |µ�1(a)| = k), and |M | = k|V |. Define each method as h0, 0, 0i,
meaning that each method can either be executed at time 0 or it will not be
executed at all. The mutex constraints will ensure that each agent can only
have at most one method executed. Create an enables NLEs (i.e. precedence
constraint) between all pairs of methods associated with like colors on adjacent
vertices. Since each method has only one feasible start time, these NLEs ensure
that two adjacent vertices cannot have two methods of the same color scheduled
to execute. Creating this mapping will require

�
n
2

�
2k = O(n2) operations, which

is in P.

1This definition was adapted from [19] and has been modified for the sake of brevity,
clarity, and applicability.

Chapter 5.2: Technical Approach 47

5.2 Technical Approach

The basis of our approach is to map a given C tæms representation of the
coordinators problem to an equivalent DCOP whose solution leads to an optimal
schedule, as in Figure 1.1. The technical challenge lies in ensuring that the
resulting DCOP’s solution leads to an optimal schedule. The following section
formalizes the approach.

5.2.1 Mapping C tæms to a DCOP

For each agent in the C tæms instance, a 2 A, create an associated DCOP
agent. For each method, M 2 M , create an associated variable vM 2 V .
Therefore, the ↵ function of the DCOP can be defined as an analogue of the µ
function of C tæms. The domains of the variables will contain all possible start
times of the method (including an option for the method to forgo execution).
In order to encode the mutex constraints,

(8a 2 A : (8(Mi,Mj) 2 µ�1(n)⇥ µ�1(n) : fij(x 2 Di, y 2 Dj) 7! 1

when (x < y < x+ dMi) _
�
y < x < y + dMj

�
)).

In other words, for all agents a 2 A find all pairs of methods Mi and Mj that
share agent a and create a hard DCOP constraint (i.e. of infinite cost) for all
pairs of equal domain values for the associated variables. This will ensure that
an agent may not execute multiple methods at once. NLEs (i.e. precedence
constraints) are encoded similarly:

(8e 2 E : (8X,Y | e(X,Y) :

(8Mi,Mj | '+(Mi, X) ^Mi 2M ^ '+(Mj , Y) ^Mj 2M

: fij(x 2 Di, y 2 Dj) 7! 1

when y < x+ dMi))).

For all enables NLEs, find all pairs of methods that are in the subtree rooted by
the endpoints of the NLE and add a hard DCOP constraint for their associated
variables when the NLE is violated.

Finally, add one unary soft constraint for all methods’ variables as follows:

(8Mi 2M : fi(;) 7! ! (Mi)) .

If a method is not scheduled to execute, its unary constraint will have a cost
equal to the quality that the method would have contributed to G had it been
executed. This mapping will produce a DCOP with |M | variables and worst-
case O(|M |

2) constraints.
An example of this mapping on a C tæms instance consisting of three tasks

and four methods is presented in Figure 5.1.

48 Chapter 5.2: Technical Approach

T1

(Task Group)

T3

M4M3

T2

M2M1

A = {a
1

, a
2

}

M = {M
1

= (0,1, 10) ,

M
2

= (0,1, 15) ,

M
3

= (0, 50, 20) ,

M
4

= h0, 45, 10i }

T = {T
1

, T
2

, T
3

}

e(M
1

,M
3

) 7! True

e(T
2

,M
4

) 7! True

G = T
1

µ(M
1

) 7! n
1

µ(M
3

) 7! n
1

µ(M
2

) 7! n
2

µ(M
4

) 7! n
2

�(M
1

) 7! T
2

�(M
2

) 7! T
2

�(M
3

) 7! T
3

�(M
4

) 7! T
3

�(T
2

) 7! T
1

�(T
3

) 7! T
1

!(T
1

) = !(T
2

) + !(T
3

)

!(T
2

) = !(M
1

) + !(M
2

)

!(T
3

) = !(M
3

) + !(M
4

)

!(M
1

) = 0

!(M
2

) = 0

!(M
3

) = 10, if executed

!(M
4

) = 15, if executed

7!

A = {a
1

, a
2

}

V = {v
1

, v
2

, v
3

, v
4

}

D = {D
1

= {;, 0, 1, 2, . . .},

D
2

= {;, 0, 1, 2, . . .},

D
3

= {;, 0, 1, 2, . . . , 50},

D
4

= {;, 0, 1, 2, . . . , 45} }

F = {f
1,3(i 2 D

1

, j 2 D
3

) 7! 1

when

⇣
i < j < i + dM

1

⌘

_
⇣
j < i < j + dM

3

⌘

_
⇣
j < i + dM

1

⌘
,

f
2,4(i 2 D

2

, j 2 D
4

) 7! 1

when

⇣
i < j < i + dM

2

⌘

_
⇣
j < i < j + dM

4

⌘

_
⇣
j < i + dM

2

⌘
,

f
1,4(i 2 D

1

, j 2 D
4

) 7! 1

when

⇣
j < i + dM

1

⌘
,

8i 2 {1..4} :

fi(j 2 Di) 7! !
�
Mi

�

when j = ;,

In all other instances, f 7! 0}

↵(v
1

) 7! a
1

↵(v
2

) 7! a
2

↵(v
3

) 7! a
1

↵(v
4

) 7! a
2

(a) (b) (c)

Figure 5.1: An example task hierarchy, (a), with associated representation in
C tæms, (b), along with our mapping to a DCOP, (c).

Chapter 5.2: Technical Approach 49

5.2.2 Näıve Domain Bounding

Nothing thus far in the mapping precludes domains from being infinite. The
example presented in Figure 5.1 has two such domains: D1 and D2. This poses
a problem, since the definition of a DCOP forbids infinite domains (see §5.1.2).
From a practical standpoint, this is also a problem because most DCOP solution
techniques have computational complexity

O

 ✓P
D2D |D|

|D |

◆|V |!
.

Since the number of variables, |V |, is generally inflexible, not only do we need to
make the domains finite but we ideally need to make them as small as possible
while ensuring that the solution space of the DCOP still contains the optimal
solution.

Without using any constraint propagation, domain filtering, pruning, or
consistency techniques [5], it is still possible to create a finite (although not
necessarily tight) upper bound on the start times of the methods. Let us con-
sider a C tæms instance in which all methods have an earliest start time of
zero. In this case, assuming all of the methods will be executed, the optimal
start time of a method cannot be greater than the sum of the expected dura-
tions of all of the other methods. In the general case of heterogeneous earliest
start times, we can define an upper bound on the start time of a method M
as the maximum finite earliest start time in M plus the duration of all other
methods:

8
>><

>>:

uM � dM if uM 2 N0,

✓
max

{M 02M :M 0 6=M}
lM 0

◆
+

0

@
X

M 02M�{M}

dM 0

1

A if uM =1.

Theorem 2. The proposed method of näıve domain bounding will not prune
all optimal solutions.

Proof. The longest possible C tæms schedule duration will occur when all of
the methods are chosen to execute. A schedule will have a maximal completion
time when there exists an enables NLE chain over all of the methods, rooted
at the method with maximum earliest start time. There might be an infinite
number of optimal solutions to a C tæms instance. All optimal schedules,
however, will have the same quality as the schedule in which all of the methods
are executed, in order, starting with the method with maximum earliest start
time. Let us assume, on the contrary, that the optimal schedule does not execute
all methods, yet the näıve bounding does prune the optimal solution. The only
way this can be the case is if some method’s optimal execution time were greater
than the maximum start time plus the longest possible duration, which would

50 Chapter 5.2: Technical Approach

mean such a schedule would be longer than the longest possible duration: a
contradiction.

TakeM1 from Figure 5.1 as an example of a method with an infinite deadline.
Using this näıve bounding technique, the maximum start time of M1 could be
set to

max {uM
3

= 50, uM
4

= 45}+
X

{dM
2

= 15, dM
3

= 20, dM
4

= 10} = 95,

thus making M1’s näıve domain D1 = {;, 0, 1, 2, . . . , 95}.

5.2.3 Bound Propagation

Although the nature of the Coordinators problem implies that a child’s bounds
are inherited from (and therefore cannot be looser than) its parent’s, theC tæms
modeling language neither requires nor enforces this. Assuming each child
knows the bounds of its parent, bounds can be propagated down the tree from
the root to improve upon the näıve bounding. Formally, the recursion is as
follows:

l0X =

(
lX if X = G _ lX � l�(X),

l�(X) Otherwise.

u0
X =

(
uX if X = G _ uX u�(X),

u�(X) Otherwise.

A distributed method for implementing this procedure (only requiring local
knowledge) is given in Algorithms 4 and 5. To calculate the bounds for the
methods of agent a, the algorithm would be invoked as

Recurse-Execution-Bounds(a,G,C, 0,1).

5.2.4 Constraint Propagation

A binary constraint, fij , is arc consistent if

(8di 2 Di : (9dj 2 Dj : fij (di, dj) 6=1)) .

A DCOP is said to be arc consistent if all f 2 F are arc consistent [5]. We use
forward constraint propagation down the NLE chains to prune the domains,
ensuring arc consistency of the DCOP. Intuitively, if method M1 enables M2,
then the earliest start time of M2 cannot possibly be less than the earliest start
time of M1 plus the expected duration of M1. An example of this procedure

Chapter 5.2: Technical Approach 51

Algorithm 4 Recurse-Execution-Bounds(a, t, C, `, �)

Require: a is the agent from whose perspective we will create. the bounds, t
is the task rooting the tree whose bounds we will create, C is a C tæms
problem instance, ` is a lower bound on the bounds of t, and � is an upper
bound on the bounds of t.

Ensure: �a : T ! (N0 [{1}) ⇥ (N0 [{1}) is a function mapping all tasks
in the subtree rooted at t to lower and upper bounds on their start times.
The subscript a exists to emphasize the point that each agent has its own
� function; the mapping of each � function is contingent upon the extent
of knowledge the agent has been given within the problem instance.

1: l `
2: u �
3: if Visible-To?(C, t, a) then
4: e Earliest-Start-Time(C, t)
5: d Deadline(C, t)
6: if e 6=1^ e > l then
7: l e
8: end if
9: if d 6= �1^ d < u then

10: u d
11: end if
12: end if
13: �a(t) 7! (l, u)
14: for all s 2Subtasks(C, t) do
15: if Is-Method?(C, s) then
16: This means s is a method (i.e. a special type of task)
17: if Visible-To?(C, s, a) then
18: lm l
19: um u
20: e Earliest-Start-Time(C, s)
21: d Deadline(C, s)
22: a Expected-Duration(C, s)
23: if e 6=1^ e > lm then
24: lm e
25: end if
26: if d 6= �1^ d� a < um then
27: um d
28: end if
29: �a(s) 7! (lm, um)
30: end if
31: else
32: This means s is a regular task.
33: Recurse-Execution-Bounds(a, s, C, l, u)
34: end if
35: end for

52 Chapter 5.3: Results

Algorithm 5 Execution-Bounds(a, C)

Require: a is the agent from whose perspective we will create the bounds and
C is a C tæms problem instance.

Ensure: � : T ! (N0 [{1})⇥ (N0 [{1}) is a function mapping all tasks in
C that are visible to a to to lower and upper bounds on their start times.

1: Recurse-Execution-Bounds(a,Task-Group(C), C, 0,1)

-

.

M1

M2

time

-

.

|{z}

M1

M2

Expected duration of M1

time

(a) (b)

Figure 5.2: Feasible start times for methods M1 and M2 both before, (a),
and after, (b), constraint propagation. If the C tæms model declares M1 as
enabling M2, (a), then constraint propagation will increase the lower bound on
the start time of M2 to the earliest start time of M1 plus the expected duration
of M1, (b).

is given in Figure 5.2. A centralized algorithm for performing constraint prop-
agation is given in Algorithm 6. An equivalent distributed version is given in
Algorithm 8. Note that this algorithm makes use of Algorithm 7, Broadcast-
Bounds(C,�a, a), which has the following postcondition: agent a’s bounds will
be broadcast to all other agents that share an NLE with the method/task asso-
ciated with the given bound. Algorithm 8 works by having agents continually
broadcast their current start time bounds for their methods; if they receive
a bound that violates arc consistency, they increase the lower bound on their
method’s start time until the constraint is arc consistent and re-broadcast the
new bounds. Since the lower bounds monotonically increase and are bounded
above, the algorithm must terminate. An analysis of the messaging overhead
of this algorithm is presented in §5.3.

5.3 Results

Using the Coordinators program scenario generator, we randomly-generated a
set of 100 C tæms instances, each with 4 agents, 3-to-4 windows2, 1-to-3 agents

2“Windows” are tasks whose parent is the task group (i.e., they are tasks at the second
layer from the root in the HTN).

Chapter 5.3: Results 53

Algorithm 6 Centralized-NLE-Tightening(C,B)

Require: C is a C tæms problem instance and B is a set of bound functions
{�a

1

,�a
2

,�a
3

. . .}, one for each agent (e.g. as calculated by the Execution-
Bounds algorithm).

1: repeat
2: q False
3: for all n 2Enables-NLEs(C) do
4: for all (s, t) 2Sources(n,C)⇥Targets(n,C) do
5: if Visible-To?(C, t,Get-Agent(C, s))_Visible-To?(C, s,Get-

Agent(C, t)) then
6: as Get-Agent(C, s)
7: at Get-Agent(C, t)
8: (ls, us) �as(s)
9: (lt, ut) �at(t)

10: � ls+Expected-Duration(C, s)� lt
11: if � > 0 ^ lt + � ut then
12: �as(t) 7! (lt + �, ut)
13: �at(t) 7! (lt + �, ut)
14: q True
15: end if
16: end if
17: end for
18: end for
19: until ¬q

54 Chapter 5.3: Results

Algorithm 7 Broadcast-Bounds(C,�a, a)

Require: C is a C tæms problem instance and �a is the associated bound
function for the agent, a, that is running this instance of the algorithm.
Broadcasts are tuples of the form ha, r 2 {Source, Target}, s, t, (l, u)i,
where f is the agent sending the broadcast, r is the role of the sender in
the NLE, s is the source method in the NLE, t is the target method in the
NLE, and (l, u) are the bounds for the method a is controlling (as defined
by its role, r).

Ensure: Agent a’s bounds will be broadcast to all other agents that share an
NLE with the method/task associated with the given bound.

1: for all (n, s) 2Source-of-Enables-NLEs(C, a) do
2: For each NLE of which a is a source (i.e. an enabler)...
3: for all t 2Targets(n,C) do
4: Send-Message((a,Source, s, t,�a(s)) ,Get-Agent(t))
5: end for
6: end for
7: for all (n, t) 2Target-of-Enables-NLEs(C, a) do
8: For each NLE of which a is a target (i.e. the enabled)...
9: for all s 2Sources(n,C) do

10: Send-Message((a,Target, s, t,�a(s)) ,Get-Agent(s))
11: end for
12: end for

Chapter 5.3: Results 55

Algorithm 8 Distributed-Constraint-Propagation(C,�a, a,Q)

Require: C is a C tæms problem instance and �a is the associated bound
function for the agent, a, that is running this instance of the algorithm. Q
is a queue that is continuously updated with incoming broadcasts.

1: Broadcast-Bounds(C,�, a)
2: while Q 6= ; do
3: (f, r, s, t, (l, u)) Pop(Q)
4: if r =Source then
5: �a(s) 7! (l, u)
6: ls l
7: us u
8: (lt, ut) �a(t)
9: else

10: �a(t) 7! (l, u)
11: lt l
12: ut u
13: (ls, us) �a(s)
14: end if
15: � ls+Expected-Duration(C, s)� lt
16: if � > 0 ^ lt + � ut then
17: �a(t) 7! (lt + �, ut)
18: �a(t) 7! (lt + �, ut)
19: Broadcast-Bounds(C,�a, a)
20: end if
21: end while

56 Chapter 5.3: Results

Avg. Domain Avg. Final State Final
Size Domain Space State

Solubility Reduction Size Reduction Space Size
Solved 8.02% 35.29 97% 2.34⇥ 1071

Unsolved 7.61% 35.24 94% 1.47⇥ 1077

Table 5.1: E�ciency of Algorithm 8 at reducing average domain size and state
space size, in terms of solubility.

per window, and 1-to-3 NLE chains. Note that the scenario generator does not
ensure that a feasible schedule exists for its resulting C tæms instances. Even
with the small simulation prameters and using all of our domain reduction
techniques, the average state space size of these problems was astronomical: on
the order of 1077. Therefore, some of the problems inevitably require inordinate
amounts of computation time before converging on the optimal solution. There
seems to be a phase transition in the problems, such that some are soluble
within the first couple thousand cycles of the DCOP algorithm, while the rest
keep searching for an optimal solution into the millions of cycles. In terms
of computation time, this equates to several orders of magnitude di↵erence:
seconds versus days. This necessitated a threshold—that we’ve set to 10,000
DCOP cycles—above which a C tæms instance is simply declared “insoluble.”
We have not found a single C tæms instance that has been soluble in greater
than 5000 cycles (given a reasonable amount of computation time).

We used the DCOP algorithm Adopt [41] to solve the resulting DCOPs. Of
the 100 random problems, none were soluble by the näıve domain bounding
approach. Applying bound propagation (Algorithm 4) to the näıve bounding
resulted in 2% of the problems becoming soluble. Applying all of our methods
resulted in 26% solubility. Using an upper one-sided paired t-test, we can say
with 95% certainty that Algorithm 8 made an average domain size reduction of
7.62% over the domains produced from Algorithm 4. If we look at this reduction
in terms of state space size, however, it becomes much more significant: an
average 94% decrease in state space size. Table 5.1 presents the state space
reduction e�ciency of our constraint propagation technique in terms of problem
solubility. Since constraint propagation was fairly consistent in the percentage
of state space reduced between those problems that were soluble and those
that were insoluble, this suggests that the 74% of the problems that remained
insoluble were due to the large state space size inherent in their structure. For
example, the insoluble problems’ state spaces were, on average, one million
times as large as those that were soluble.

We also conducted a battery of tests over C tæms problems of di↵ering
complexity (by varying the number of windows and NLE chains). The number
of windows is correlated to the number of variables in the resulting DCOP, while

Chapter 5.3: Results 57

NLE % Soluble Avg. # Cycles Avg. # Messages
Windows Chains Näıve CP Näıve CP Näıve CP

3 0 0 40.00 - 143.87 - 2569.25
3 2 0 36.67 - 143.40 - 3114.14
3 4 0 46.67 - 220.73 - 3854.2
4 0 0 33.33 - 83.89 - 1758.5
4 2 0 11.76 - 66.18 - 2783
4 4 0 33.33 - 108.72 - 3887
5 0 0 60.00 - 122.1 - 1364.5
5 2 0 60.00 - 242.4 - 2634
5 4 0 50.00 - 248.8 - 5748.67

* 6 3 0 41.67 - 196.42 - 4025.08

Table 5.2: Solubility statistics for di↵erent complexities of C tæms instances.
All simulations were conducted with four agents. None of the problems bounded
using the näıve method were soluble. * This is the default configuration for the
C tæms scenario generator.

the number of NLEs is correlated to the number of constraints in the resulting
DCOP. These data are presented in Table 5.2. Notice that problems bounded
näıvely were never soluble. Over the most complex problems with 6 windows
and 3 NLEs chains, Algorithm 8 required an average of 144.94 messages (with a
standard deviation of 16.13). This was negligible in comparison to the number
of messages required to arrive at an optimal solution.

Chapter 6 “ This one’s from the book!”

— Pál Erdős

Conclusions

This thesis provides three contributions. First of all, MATES: the Macro Agent
Transport Event-based Simulator was presented. MATES is the first simulator
of its kind and provided the testbed for our subsequent investigations. Secondly,
we developed a bottom-up approach to distributing global state information
around a dynamic peer-to-peer network. Finally, we used the model generated
by the belief of the global state to drive a top-down automated mechanism by
which agents can develop globally-optimal low-level schedules.

6.1 Evaluating Multi-Agent Systems
on Dynamic Peer-to-Peer Networks

MATES’ “continued execution” architecture was proposed, providing a means
for simulators to increase transparency and appear akin to development for real-
world agent systems. The validity of MATES’ models was confirmed through
correlation between simulated experiments and live, empirical data. Dynamic,
peer-to-peer networks and agency are both heavily researched areas of computer
science. As these types of networks become more prevalent, e�cient distributed
algorithms will be required; the need for further research in this area has already
been established [39]. Therefore, a system for testing and comparing these
algorithms before deployment is a necessity. We believe MATES, or a system
like it, is a step toward achieving this.

6.1.1 Estimating Global State

We have presented an approach to service discovery in dynamic network en-
vironments. The current literature on SOAs does not yet address these issues
directly, nor has there been any substantial theoretical or empirical studies
of approaches to solve the discovery problem for SOAs in environments as
MANETs. In this context, the location and capabilities of services, agents,
and hosts are all part of a global state which can only be partially observed
by each agent, host or service provider in the network. The technical approach

59

60
Chapter 6.1: Evaluating Multi-Agent Systems

on Dynamic Peer-to-Peer Networks

proposed herein uses mobile agents and exploits the combinatorial properties of
random walks to create a set of service discovery agents that maintain overall
state for all nodes on the network.

The principle contributions of this facet of the thesis includes the devel-
opment of a mathematical formulation of the problem of service discovery by
mobile agents in a dynamic network and a set of empirical studies that validate
the formulation using MATES. A method for distributing global state infor-
mation using service discovery agents has been proposed. Possible applications
for the service discovery mechanism and its associated model include learning
service availability thresholds, “network triage,” time-critical reasoning, service
composition, and agent population size optimization.

The results also indicate that this proactive approach can be used to main-
tain accurate state information across a dynamic network while having a limited
e↵ect on network messaging. This work represents an important example of how
mobile agents can be practically adapted to the constraints posed by real net-
work environments. In addition, this work can provide a basis for enabling
multi-agent planning to sense and react to vital network-level events in order
to improve plan execution and survivability.

6.1.2 Multi-Agent Coordination

We have presented a mapping from a subset of the C tæms modeling language
to an equivalent DCOP. We have shown that the resulting DCOP is soluble us-
ing existing techniques, and whose solution is guaranteed to lead to an optimal
schedule. We have empirically validated our approach, using various existing
techniques from the constraint processing literature, indicating that these prob-
lems are in fact soluble using our method.

We hope to and are optimistic in extending our mapping to subsume a larger
subset of C tæms, including more types of NLEs and QAFs. There are also
various heuristic techniques in the literature, such as variable ordering [14],
that can be applied to the mapping while retaining formal guarantees on so-
lution quality. If the resulting schedule need not be optimal (i.e. feasibility is
su�cient), approximation techniques for DCOPs also exist.

With the groundwork laid in solving distributed multi-agent coordination
problems with distributed constraint optimization, we have many extensions
in which to investigate. For example, we can exploit the HTN structure of
C tæms by solving the problem hierarchically; first choose bounds on the exe-
cution time of a task and then recursively choose tighter bounds for its children.
When a task has multiple children the problem would then be in intelligently
partitioning and allotting the parent’s domain to its children. We are also inter-
ested in the problem of re-planning, if changes to the original C tæms problem
occur after the optimal schedule is already found. There are certain classes of
perturbations to the original problem from which we can re-plan in a bounded

Chapter 6.1: Evaluating Multi-Agent Systems
on Dynamic Peer-to-Peer Networks 61

amount of time given the optimal schedule from the original problem.

6.1.3 Coordinating Agents in Stochastic Peer-to-Peer En-
vironments

This thesis has laid the groundwork for bootstrapping a distributed system—in
which all knowledge is local and communication is not ensured—to the point
where multilateral, globally-optimal decisions can be made. As these systems
become more prevalent and complex, it is imperative that we advance these
techniques to a high level of automation. It is my hope that this thesis has both
motivated interest in and progressed our understanding of these problems.

Appendix A
«[C]e miracle de l’Analyse, prodige du

monde des idées, objet presque amphibie

entre l’

ˆ

Etre et le Non-être, que nous

appelons racine imaginaire.»
—Attributed to Gottfried Wilhelm von Leibniz

Translation: This miracle of analysis, this marvel
of the world of ideas, an almost amphibian object
between Being and Non-being that we call the imag-
inary number.

Notation and Nomenclature

The following sections define the notation and nomenclature used throughout
this thesis.

Notation

R+ The transitive closure of a binary relation R.

Ex,y The weight of the edge between vertices x and y in the edge

set E of a graph.

X ⇥ Y The Cartesian product (or direct product) of two sets:

{(x, y)|x 2 X ^ y 2 Y }.

|X| Cardinality, whenX is a set; the absolute value ofX otherwise.

~X A vector.

~Xi The ith element of vector ~X.

63

64 Chapter A: Notation and Nomenclature

~⇡ A primary right eigenvector; ~⇡ corresponds to the eigenvalue,

�1, of matrix X such that ~⇡X = �1~⇡.

P (X) The probability of an event X.

hXi The expected value of a random variable X.

X̂ An estimator of parameter X.

(a, b, c) A tuple containing elements a, b, and c.

maxx2X f(x) The maximum value of f(x) over all elements in the set X.

bxc The floor function; bxc = (maxn2Z(n) : n < x).

f : A! B A function, f , mapping the elements of set A to the elements

of the set B.

f(a) 7! b The statement that function f maps a 2 A to b 2 B.

f�1(b) The inverse of a function; given a function f : A ! B, f�1

maps B to a subset of A such that f�1(b) 7! {a 2 A : f(a) 7!

b}.

=) The material conditional (i.e., implies operator); p =) q is

equivalent to ¬p _ q.

() If and only if; p() q is equivalent to (p =) q)^ (q =) p).

O(g(x)) Given two functions f(x) and g(x) defined on some subset of

R, we say f(x) is O(g(x)) as x ! 1 if and only if 9x09y > 0

such that |f(x)| y|g(x)| for x > x0.

L1 p L2 The language L1 is polynomial-time reducible to a language L2;

there exists a polynomial-time function f : {0, 1}⇤ ! {0, 1}⇤

such that for all x 2 {0, 1}⇤, x 2 L1 () f(x) 2 L2.

Chapter A: Notation and Nomenclature 65

Nomenclature

N0 The natural numbers, including zero (i.e., non-negative inte-

gers).

Z The integers.

R The real numbers.

B A boolean domain: {True,False}.

NP The class of languages (i.e., problems) can be verified by a

polynomial-time algorithm. A language L belongs to NP if

and only if there exist a two-input polynomial-time algorithm

A and a constant c such that L = {x 2 {0, 1}⇤ : there exists a

certificate y with |y| = O (|x|c) such that A(x, y) = 1}.

NP-Hard Non-deterministic Polynomial-time Hard. A class of languages

(i.e., problems) that contains all languages L such that for all

L0
2 NP, L0

p L.

A A set of agents.

H A set of hosts.

S A set of services.

� A time interval represented as a non-negative real number.

⌫ The probability that an agent will be at a host.

⌘ The number of instances of a service within a network.

` The average amount of time required for an agent to migrate

between two adjacent hosts.

66 Chapter A: Notation and Nomenclature

⌧ The maximum allowable amount of time since a service discov-

ery agent last saw an instance of a service.

N A local state description, represented as the tuple

(t, ⌫, ⌘, |H|, |A|, `).

N The set of all possible state descriptions.

 : N ⇥S⇥

H ! [0, 1]

A function returning the probability that at least one agent

a 2 A with knowledge of a service s 2 S will visit a specific

host h 2 H in a time interval t.

V The set of variables in a DCOP.

D The set of domains for the variables of a DCOP; there is one

D 2 D for each v 2 V .

; The empty set, or, when an element of a domain D 2 D , the

choice not to execute a method.

F A set of cost functions for a DCOP; each fij in F is a function

fij : Di ⇥Dj ! N0 [{1}.

↵ : V ! A A function mapping variables in a DCOP to their associated

agent.

� : F ! N0 A function that aggregates the costs in F for a given assignment

of the variables of a DCOP.

J The adjacency matrix of a network. J is a square, |H| by |H|

matrix such that Jij equals the link quality from host Hi to

host Hj . Note that J might not be symmetric if the radio

ranges of the hosts are not homogeneous.

Chapter A: Notation and Nomenclature 67

The definitions for O(g(x)), L1 p L2, NP , and NP-Hard were adapted
from [16].

Bibliography

[1] Syed Ali, Sven Koenig, and Milind Tambe. Preprocessing techniques for
accelerating the dcop algorithm adopt. In AAMAS ’05: Proceedings of the
fourth international joint conference on Autonomous agents and multiagent
systems, pages 1041–1048, New York, NY, USA, 2005. ACM Press.

[2] F. Bai, N. Sadagopan, and A. Helmy. Important: a framework to systemat-
ically analyze the impact of mobility on performance of routing protocols
for adhoc networks. In Twenty-Second Annual Joint Conference of the
IEEE Computer and Communications Societies, pages 825–835, 2003.

[3] Christopher L. Barrett, Madhav V. Marathe, D. Charles Engelhart, and
Anand Sivasubramaniam. Approximate connectivity graph generation in
mobile ad hoc radio networks. In Proceedings of the 36th Annual Simulation
Symposium, page 81. IEEE Computer Society, 2003.

[4] Lali Barrière, Paola Flocchini, Pierre Fraigniaud, and Nicola Santoro. Cap-
ture of an intruder by mobile agents. In Proceedings of the fourteenth
annual ACM symposium on Parallel algorithms and architectures, pages
200–209. ACM Press, 2002.

[5] Roman Barták. Theory and practice of constraint propagation. In J. Fig-
wer, editor, Proceedings of the 3rd Workshop on Constraint Programming
in Decision Control, Poland, June 2001.

[6] BBN Technologies. Cougaar architecture document.
http://docs.cougaar.org, February 2003.

[7] C. Bessiere. Arc-consistency and arc-consistency again. Artificial Intelli-
gence, 65:179–190, 1994.

[8] C. Bessiere, E. Freuder, and J-Ch. Regin. Using constraint metaknowledge
to reduce arc consistency computation. Artificial Intelligence, 107:125–148,
1999.

69

70 BIBLIOGRAPHY

[9] Brandon Bloom, Christopher J. Dugan, Tedd Gimber, Bernard Goren,
Moshe Kam, Joseph B. Kopena, Robert N. Lass, Israel Mayk, Spiros Man-
coridis, Pragnesh Jay Modi, William M. Mongan, William C. Regli, Randy
Reitmeyer, Je↵ K. Salvage, Evan A. Sultanik, and Todd Urness. Agent
systems reference model. Technical Report Draft 7183, Intelligent Agents
Product Sub-Team, Networking Integrated Product Team, Command and
Control Directorate, Department of the Army, February 2006.

[10] M. Boddy, B. Horling, J. Phelps, R. Golman, R. Vincent, A. Long, and
B. Kohout. C-taems language specification v. 1.06, 2005.

[11] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
Web search engine. Computer Networks and ISDN Systems, 30(1–7):107–
117, 1998.

[12] Tracy Camp, Je↵ Boleng, and Vanessa Davies. A survey of mobility models
for ad hoc network research. Wireless Communication & Mobile Computing
(WCMC): Special Issue on Mobile Ad Hoc Networking: Research, Trends
and Applications, 2(5):483–502, 2002.

[13] Dipanjan Chakraborty, Yelena Yesha, and Anupam Joshi. A distributed
service composition protocol for pervasive environments. In IEEE Wireless
Communications and Networking Conference, 2004.

[14] Anton Chechetka and Katia Sycara. A decentralized variable ordering
method for distributed constraint optimization. In AAMAS ’05: Proceed-
ings of the fourth international joint conference on Autonomous agents and
multiagent systems, pages 1307–1308, New York, NY, USA, 2005. ACM
Press.

[15] Vincent Cicirello, Max Peysakhov, Gustave Anderson, Gaurav Naik, Ken-
neth Tsang, William Regli, and Moshe Kam. Designing dependable agent
systems for mobile wireless networks. IEEE Intelligent Systems, 19(5):39–
45, September 2004. Special Issue on Dependable Agent Systems.

[16] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli↵ord
Stein. Introduction to Algorithms. McGraw-Hill, second edition, 2001.

[17] Je↵rey S. Cox, Edmund H. Durfee, and Thomas Bartold. A distributed
framework for solving the multiagent plan coordination problem. In AA-
MAS ’05: Proceedings of the fourth international joint conference on Au-
tonomous agents and multiagent systems, pages 821–827, New York, NY,
USA, 2005. ACM Press.

[18] P. Dasgupta. Improving peer-to-peer resource discovery using mobile agent
based referrals. In Proceedings of the 2nd International Autonomous Agents

BIBLIOGRAPHY 71

and Multi-agent Systems Conference (AAMAS), Proceedings of the 2nd

Workshop on Agent Enabled P2P Computing, pages 41–54, July 2003.

[19] John Davin and Pragnesh Jay Modi. Impact of problem centralization in
distributed constraint optimization algorithms. In Proceedings of Forth In-
ternational Joint Conference on Autonomous Agents and Multiagent Sys-
tems, pages 1057–1063, July 2005.

[20] Keith Decker. TAEMS: A Framework for Environment Centered Analysis
& Design of Coordination Mechanisms. In Foundations of Distributed Ar-
tificial Intelligence, Chapter 16, pages 429–448. G. O’Hare and N. Jennings
(eds.), Wiley Inter-Science, January 1996.

[21] Christos Gkantsidis, Milena Mihail, and Amin Saberi. Random walks in
peer-to-peer networks. In Proceedings of the 23rd Annual Joint Conference
of the IEEE Computer and Communications Societies. IEEE, March 2004.

[22] Y. Hamadi. Optimal distributed arc-consistency. Constraints, 7:367–385,
2002.

[23] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Vi-
ennot. Optimized link state routing protocol for ad hoc networks. In IEEE
INMIC 01: Technology for the 21st Century., pages 62–68, 2001.

[24] David B. Johnson, David A. Maltz, and Josh Broch. DSR: The dynamic
source routing protocol for multihop wireless ad hoc networks. Ad Hoc
Networking, pages 139–172, 2001.

[25] M. L. Kahn and C. D. T. Cicalese. The CoABS grid. In Innovative
Concepts of Agent-Based Systems: 1st International Workshop on Radi-
cal Agent Concepts, 2002.

[26] Lefteris M. Kirousis, Evangelos Kranakis, Danny Krizanc, and Yannis C.
Stamatiou. Locating information with uncertainty in fully interconnected
networks. In International Symposium on Distributed Computing, pages
283–296, 2000.

[27] Donald E. Knuth. The TEXbook. Addison-Wesley Publishing Co., Menlo
Park, 1984.

[28] Joseph B. Kopena, Vincent A. Cicirello, Maxim Peysakhov, Kris Malfet-
tone, Andrew Mroczkowski, Gaurav Naik, Evan Sultanik, Moshe Kam, and
William C. Regli. Network awareness and the Philadelphia Area Urban
Wireless Network Testbed. In AAAI Spring Symposia on AI in Homeland
Security, 2005.

72 BIBLIOGRAPHY

[29] Joseph B. Kopena, Gaurav Naik, Maxim D. Peysakhov, Evan A. Sultanik,
and William C. Regli. Service-based computing for agents on disruption
and and delay prone networks. In Proceedings of the Fourth Interna-
tional Joint Conference on Autonomous Agents & Multi-Agent Systems,
July 2005.

[30] Ulaş C. Kozat and Leandros Tassiulas. Service discovery in mobile ad
hoc networks: An overall perspective on architectural choices and network
layer support issues. Ad Hoc Networks, 2:23–44, 2004.

[31] Leslie Lamport. LATEX: A Document Preparation System. Addison-Wesley
Publishing Co., Menlo Park, 1986.

[32] B. Langley, M. Paolucci, and K. Sycara. Discovery of infrastructure
in multi-agent systems. In Agents 2001 Workshop on Infrastructure for
Agents, MAS, and Scalable MAS, 2001.

[33] R. P. Lentini, G. P. Rao, J. N. Thies, and J. Kay. Emaa: An extend-
able mobile agent architecture. In AAAI Workshop on Software Tools for
Developing Agents, July 1998.

[34] Sean Luke, Claudio Cio�-Revilla, Liviu Panait, and Keith Sullivan. MA-
SON: A new multi-agent simulation toolkit. In Proceedings of the 2004
SwarmFest Workshop, 2004.

[35] A.K. Mackworth. Consistency in networks of relations. Artificial Intelli-
gence, 8(1):99–118, 1977.

[36] Rajiv T. Maheswaran, Milind Tambe, Emma Bowring, Jonathan P. Pearce,
and Pradeep Varakantham. Taking DCOP to the real world: E�cient
complete solutions for distributed multi-event scheduling. In Proc. of the
Third International Joint Conference on Autonomous Agents and Multia-
gent Systems, pages 310–317, 2004.

[37] Roger Mailler and Victor Lesser. Solving distributed constraint optimiza-
tion problems using cooperative mediation. In AAMAS ’04: Proceedings
of the Third International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 438–445, Washington, DC, USA, 2004. IEEE
Computer Society.

[38] Shivanajay Marwaha, Chen Khong Tham, and Dipti Srinivasan. Mobile
agents based routing protocol for mobile ad hoc networks. In Proceedings
of IEEE International Conference on Networks, pages 27–30, August 2002.

[39] Nikos Migas, William J. Buchanan, and Kevin A. McArtney. Mobile agents
for routing, topology discovery, and automatic network reconfiguration in
ad-hoc networks. In Proceedings of the 10th IEEE Conference and Workshop
on the Engineering of Computer-Based Systems, pages 200–206, 2003.

BIBLIOGRAPHY 73

[40] Nelson Minar, Kwindla Hultman Kramer, and Pattie Maes. Cooperating
Mobile Agents for Dynamic Network Routing, chapter 12. Springer-Verlag,
1999. ISBN: 3-540-65578-6.

[41] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt: Asynchronous
distributed constraint optimization with quality guarantees. Artificial In-
telligence Journal, 2005.

[42] David J. Musliner, Edmund H. Durfee, Jianhui Wu, Dmitri A. Dolgov,
Robert P. Goldman, and Mark S. Boddy. Coordinated plan management
using multiagent MDPs. In Proceedings of the AAAI Spring Symposium
on Distributed Plan and Schedule Management. AAAI Press, March 2006.

[43] Khaled Nagi, Iman Elghandour, and Birgitta König-Ries. Mobile agents
for locating documents in ad-hoc networks. In Claudio Sartori Gian-
luca Moro and Munindar P. Singh, editors, Agents and Peer-to-Peer Com-
puting (AP2PC 2003), Second International Workshop, Melbourne, Aus-
tralia, July, 2003, Revised and Invited Papers, volume 2872 of Lecture
Notes in Computer Science, pages 199–205. Springer, 2004.

[44] Srini Narayanan and Sheila A. McIlraith. Simulation, verfication and auto-
mated composition of web services. In Eleventh International Conference
on World Wide Web, pages 77–88, 2002.

[45] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia Sycara.
Semantic matching of web services capabilities. In First International Se-
mantic Web Conference, 2002.

[46] Massimo Paolucci, Julien Soudry, Naveen Srinivasan, and Katia Sycara. A
broker for OWL-S web services. In Semantic Web Services - 2004 AAAI
Spring Symposium, 2004.

[47] Massimo Paolucci and Katia Sycara. Autonomous semantic web services.
IEEE Internet Computing, 7(5):34–41, 2003.

[48] Charles Perkins and Pravin Bhagwat. Highly dynamic destination-
sequenced distance-vector routing (DSDV) for mobile computers. In Pro-
ceedings of the ACM Conference on Communications Architectures, Pro-
tocols and Applications, pages 234–244, 1994.

[49] Charles Perkins and Elizabeth M. Royer. Ad-hoc on-demand distance
vector routing. In IEEE Workshop on Mobile Computer Systems and Ap-
plications, pages 90–100, February 1999.

[50] A. Petcu and B. Faltings. A scalable method for multiagent constraint
optimization. In Proc of International Joint Conference on Artificial In-
telligence, 2005.

74 BIBLIOGRAPHY

[51] Max Peysakhov, Donovan Artz, William Regli, and Evan Sultanik. Net-
work awareness for agent security in mobile ad-hoc networks. In Proceed-
ings of the Third International Joint Conference on Autonomous Agents
and Multi Agent Systems, pages 368–375. Association for Computing Ma-
chinery, 2004.

[52] Max Peysakhov, Vincent A. Cicirello, and William C. Regli. Ecology based
decentralized agent management system. In Proceedings of Formal Ap-
proaches to Agent-Based Systems III, April 2004.

[53] Max Peysakhov and William Regli. Ant inspired server population man-
agement in a service based computing environment. In Proc. of the IEEE
Swarm Intelligence Symposium, June 2005.

[54] Maxim D. Peysakhov, Robert N. Lass, and William C. Regli. Stability
and control of agent ecosystems. In Proceedings of the Fourth Interna-
tional Joint Conference on Autonomous Agents & Multi-Agent Systems,
July 2005.

[55] John Phelps and Je↵ Rye. GPGP—a domain-independent implementation.
In Proceedings of the 2006 AAAI Spring Symposium on Distributed Plan
and Schedule Management. AAAI Press, March 2006.

[56] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content addressable network. In Proceedings of ACM
SIGCOMM, 2001.

[57] Romit Roy Choudhury, S. Bandyopadhyay, and Krishna Paul. A dis-
tributed mechanism for topology discovery in ad hoc wireless networks
using mobile agents. In Proceedings of the 1st ACM international sym-
posium on Mobile ad hoc networking & computing, pages 145–146. IEEE
Press, 2000.

[58] Kunal Shah. Performance analysis of mobile agents in wireless internet
applications using simulation. Master’s thesis, Lamar University, August
2003.

[59] M. Silaghi, D. Sam-Haroud, and B. Falting. Asynchronous consistency
maintenance. In Intelligent Agent Technologies, 2001.

[60] Stephen Smith, Anthony T. Gallagher, Terry Lyle Zimmerman, Laura Bar-
bulescu, and Zack Rubinstein. Multi-agent management of joint schedules.
In Proceedings of the 2006 AAAI Spring Symposium on Distributed Plan
and Schedule Management. AAAI Press, March 2006.

[61] Ion Stoica, Robert Morris, David Karger, M. Francs Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet

BIBLIOGRAPHY 75

applications. In Proceedings of the 2001 conference on applications, tech-
nologies, architectures, and protocols for computer communications, pages
149–160. ACM Press, 2001.

[62] Evan Sultanik, Donovan Artz, Gustave Anderson, Moshe Kam, William
Regli, Max Peysakhov, Jonathan Sevy, Nadya Belov, Nicholas Morizio, and
Andrew Mroczkowski. Secure mobile agents on ad hoc wireless networks. In
The Fifteenth Innovative Applications of Artificial Intelligence Conference.
American Association for Artificial Intelligence, August 2003.

[63] Evan A. Sultanik, Maxim D. Peysakhov, and William C. Regli. Agent
transport simulation for dynamic peer-to-peer networks. In Proceedings of
the Sixth International Workshop on Multi-Agent-Based Simulation, July
2005.

[64] Milind Tambe. Implementing agent teams in dynamic multi-agent envi-
ronments. Applied Artificial Intelligence, 12(2–3):189–210, March 1998.

[65] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J.
Wetherall, and Gary J. Minden. A survey of active network research. IEEE
Communications Magazine, 35(1):80–86, 1997.

[66] Hiroshi Matsuo Toshihiro Matsui and Akira Iwata. E�cient method for
asynchronous distributed constraint optimization algorithm. In Artificial
Intelligence and Applications (AIA2005), pages 727–732, 2005.

[67] UCB/USC/LBNL/VINT. Network simulator (NS) version 2.
http://www.isi.edu/nsnam/ns/, February 2003.

[68] Dan Wu, Bijan Parsia, Evren Sirin, James Hendler, and Dana Nau. Au-
tomating DAML-S web services composition using SHOP2. In Second In-
ternational Semantic Web Conference, 2003.

[69] Jie Wu and Ivan Stojmenovic. Ad hoc networks. IEEE Computer Maga-
zine, 37(2):29–31, February 2004.

[70] George Xylomenos, George C. Polyzos, Petri Mähönen, and Mika Saara-
nen. TCP performance issues over wireless links. IEEE Communications
Magazine, 39(4):52–58, 2001.

[71] Oussama Kassem Zein and Yvon Kermarrec. An approach for describ-
ing/discovering services and for adapting them to the needs of users in
distributed systems. In Semantic Web Services - 2004 AAAI Spring Sym-
posium, 2004.

[72] H. Zimmerman. OSI reference model - the ISO model of architecture
for open system interconnection. IEEE Transactions on Communications,
28(4):425–432, April 1980.

