
E
va

n
A
.
S
u
lta

n
ik

P
h
.D

.
D
isserta

tio
n

S
eptem

b
er,

2010

Ph.D. Dissertation

Automatic
Construction,
Maintenance, and
Optimization of
Dynamic Agent
Organizations

Evan A. Sultanik

A Dissertation
Submitted to the Faculty of Drexel University
in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

The goal of this dissertation is to generate organizational structures that
increase the overall performance of a multiagent coalition, subject to the
system’s complex coordination requirements and maintenance of a certain
operating point. To this end, a generalized framework capable of pro-
ducing distributed approximation algorithms based on the new concept
of multidirectional graph search is proposed and applied to a family of
connectivity problems. It is shown that a wide variety of seemingly unre-
lated multiagent organization problems live within this family. Sufficient
conditions are identified in which the approach is guaranteed to discover
a solution that is within a constant factor of the cost of the optimal solu-
tion. The procedure is guaranteed to require no more than linear—and in
some well defined cases logarithmic—communication rounds. A number
of examples are given as to how the framework can be applied to create,
maintain, and optimize multiagent organizations in the context of real
world problems. Finally, algorithmic extensions are introduced that allow
for the framework to handle problems in which the agent topology and/or
coordination constraints are dynamic, without significant consequences
to the general runtime, memory, and quality guarantees.

Committee:
William C. Regli (Advisor)

Professor, Department of Computer Science, Drexel University

Director, AJ Drexel Institute for Applied Communications and Information Networking

Ali Shokoufandeh (Advisor)
Professor and Associate Department Head, Department of Computer Science, Drexel University

Rachel Greenstadt (Chair)
Assistant Professor, Department of Computer Science, Drexel University

Jeremy Johnson
Professor and Department Head, Department of Computer Science, Drexel University

Sven Koenig
Associate Professor, Department of Computer Science, University of Southern California

Program Director, National Science Foundation

Joseph P. Macker
Senior Communications and Network Research Scientist, Naval Research Laboratory



'

&

$

%

Automatic Construction,

Maintenance, and Optimization

of Dynamic Agent

Organizations

Evan Andrew Sultanik

A Dissertation
Submitted to the Faculty of Drexel University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy





iii

Dedications

This dissertation is dedicated to. . .
• my parents, Judi and Jeff, who furnished me with the requisite curiosity,

patience, and freedoms; and

• my wife Nadya—my most fervent supporter through this long process—
who postponed her dreams in deference to mine.





v

Acknowledgments

It is with great pleasure that I thank all of the people that helped me
get to this point. I have often fantasied what I would say to them, but now
in writing I struggle with how. This dissertation would not have been pos-
sible had my advisor, William C. Regli, lacked the patience and foresight
in guiding me into the world of academic research. I am equally indebted
to my co-advisor, Ali Shokoufandeh, who taught me technical diligence and
tempered my writing with humility. I must also thank my late mentor, Prag-
nesh Jay Modi, who—during his brief tenure in my education—so profoundly
affected the course of my research by introducing me to multiagent optimiza-
tion. I am also grateful to Moshe Kam who in many ways has also acted as
an unofficial co-advisor.

The content of this dissertation would not have been what it is had neither
Dr. Regli provided me the freedom to identify and frame the problems of
my choice, nor Dr. Shokoufandeh donated his time in my pursuit. Some of
my pedantic freedom was also attributable to several fellowships I received
throughout my matriculation, for which I owe sincere thanks to the George
Hill, Jr. Endowment and the Koerner family. The remainder of my support
was in the form of grants from various United States government entities,
all of which were ultimately made possible by annual financial support from
Viewers Like You.

I would also like to extend my thanks to everyone who donated time in
proof-reading and commenting on this document, notably Robert N. Lass and
my wife Nadya Sultanik (née—and known professionally as—Nadya Belov).
Robert deserves additional mention, as he was my collaborator on much of my
work during my studies, including the Mobed algorithm (cf. §6.2). Most no-
tably, I owe my deepest gratitude to my committee members: Rachel Green-
stadt, Jeremy Johnson, Sven Koenig, and Joseph Macker, for their time and
continuous input on my ideas.

Most of all I must again thank Nadya for taking care of everything else
going on in my life during the void that was the completion of this disserta-
tion.

For additional credits see page 151.



Contents

Abstract xi

1 Introduction 1
1.1 Exemplary Problems & Scenarios . . . . . . . . . . . . . . . . 3

1.1.1 Location Design & Vehicle Routing Problems . . . . . 3
1.1.2 Art Gallery Problems . . . . . . . . . . . . . . . . . . 5
1.1.3 Steiner Network Problems . . . . . . . . . . . . . . . . 5
1.1.4 Dynamic Organization Problems . . . . . . . . . . . . 7
1.1.5 The Pseudotree Creation Problem . . . . . . . . . . . 8

1.2 Overview of the Proposed Approach . . . . . . . . . . . . . . 10
1.3 Evaluating Multiagent Systems . . . . . . . . . . . . . . . . . 11
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Optimization Using the Primal-Dual Schema 17
2.1 Approximation Algorithms . . . . . . . . . . . . . . . . . . . 17
2.2 The Primal-Dual Schema . . . . . . . . . . . . . . . . . . . . 18
2.3 Proper Functions . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 The General Algorithm 25
3.1 Multidirectional Graph Search . . . . . . . . . . . . . . . . . 26

3.1.1 A Primal-Dual Formulation . . . . . . . . . . . . . . . 28
3.1.2 The Distributed Model . . . . . . . . . . . . . . . . . . 29
3.1.3 Correctness Proofs . . . . . . . . . . . . . . . . . . . . 31

3.2 Efficiency of the Algorithm . . . . . . . . . . . . . . . . . . . 37
3.2.1 Primary Communication Rounds . . . . . . . . . . . . 37
3.2.2 Secondary Communication Rounds . . . . . . . . . . . 39
3.2.3 Time-Approximation Tradeoff . . . . . . . . . . . . . . 41
3.2.4 Local Efficiency . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Probabilistic Approximation Bounds 47
4.1 Distributions of Trimmed Sums . . . . . . . . . . . . . . . . . 48

vi



4.2 The Exponential Distribution . . . . . . . . . . . . . . . . . . 52
4.3 Normal Distributions . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 The Expected Value of Z . . . . . . . . . . . . . . . . . . . . 57

5 Solving Constrained Forest Problems 61
5.1 Steiner Network Problems . . . . . . . . . . . . . . . . . . . . 62
5.2 Location Design Problems . . . . . . . . . . . . . . . . . . . . 63

5.2.1 Problem Formalization . . . . . . . . . . . . . . . . . . 65
5.2.2 Parallel Computation Model . . . . . . . . . . . . . . 67
5.2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.4 Distributing the Algorithm . . . . . . . . . . . . . . . 76

5.3 Art Gallery Problems . . . . . . . . . . . . . . . . . . . . . . 79
5.3.1 Distributed Dominating Sets . . . . . . . . . . . . . . 81
5.3.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . 83
5.3.3 Empirical Analysis . . . . . . . . . . . . . . . . . . . . 91
5.3.4 Art Gallery Variants . . . . . . . . . . . . . . . . . . . 92

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Dynamic Agent Organizations 97
6.1 Online Topology Updates . . . . . . . . . . . . . . . . . . . . 97
6.2 Pseudotree Construction . . . . . . . . . . . . . . . . . . . . . 104

6.2.1 The Mobed Algorithm . . . . . . . . . . . . . . . . . . 105
6.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7 Conclusions 121

A Notation, Nomenclature, and Glossary 139

Index 143

List of Tables

2.1 Constrained forest problems and their associated indicator func-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 A summary of lower bounds on the MST problem. . . . . . . 42

vii



viii LIST OF FIGURES

List of Figures

1.1 The interaction graph of a multiagent system layered on top
of the corresponding network topology. . . . . . . . . . . . . . 3

1.2 An example weighted distribution network, (a), along with the
optimal spanning forest and depot assignment for various de-
pot opening costs, (b) & (c). . . . . . . . . . . . . . . . . . . 4

1.3 An articulating ad hoc sensor network. . . . . . . . . . . . . . 6
1.4 A multiagent variable assignment problem mapped atop a peer-

to-peer network. . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 a6, whose interaction graph neighbors are a2 and a5, requests

to join the existing hierarchy in (a). If DFS is simply re-run
the hierarchy in (b) results. Note that the parents of both a4

and a5 change. The optimal hierarchy in terms of minimal
depth and edits—which could not have been produced by a
DFS traversal—is in (c). . . . . . . . . . . . . . . . . . . . . . 9

1.6 Worst-case time and space complexities of a number of sorting
algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Asymptotic complexity bounds for three distributed constraint
optimization algorithms. . . . . . . . . . . . . . . . . . . . . . 14

2.1 Standard procedure for approximating solutions to hard inte-
ger programming problems. . . . . . . . . . . . . . . . . . . . 18

4.1 CDF for the distribution of the sum of the m smallest order
statistics of a sample of size 10 from the standard uniform
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 CDF for the distribution of the sum of the ` largest order
statistics of a sample of size 10 from the standard uniform
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 CDF for the distribution of the sum of the ` largest order
statistics of a sample of size 10 from the standard exponential
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 CDF for the distribution of the sum of the m smallest order
statistics of a sample of size 10 from the standard normal dis-
tribution, calculated from a Monte Carlo simulation. . . . . . 55



LIST OF FIGURES ix

4.5 CDF for the distribution of the sum of the ` largest order
statistics of a sample of size 10 from the standard normal dis-
tribution, calculated from a Monte Carlo simulation. . . . . . 56

4.6 CDF for the distribution of the sum of the m smallest order
statistics of a sample of size 10 from the standard normal dis-
tribution truncated in the range [0, 1], calculated from a Monte
Carlo simulation. . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7 CDF for the distribution of the sum of the ` largest order
statistics of a sample of size 10 from the truncated standard
normal distribution truncated in the range [0, 1], calculated
from a Monte Carlo simulation. . . . . . . . . . . . . . . . . . 58

5.1 Normalized cost of the solutions for a number of randomly
generated Steiner network problems. . . . . . . . . . . . . . . 62

5.2 Average number of messaging rounds required for the algo-
rithm to reach quiescence for a number of randomly generated
Steiner network problems. . . . . . . . . . . . . . . . . . . . . 63

5.3 Solution quality of the algorithm for a number of randomly
generated Steiner network problems. . . . . . . . . . . . . . . 64

5.4 Example of the augmented location design graph and its opti-
mal solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Sketch of the distributed location design and routing algorithm. 70
5.6 Example of an art gallery, visibility graph, and optimal guard

placement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.7 A sketch of the multidirectional constrained graph search al-

gorithm solving the Art Gallery constrained forest problem. . 84
5.8 Illustration of the “Two Peasants” method of point set poly-

gonization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.9 Solution quality of the distributed art gallery algorithm for art

gallery problems of various size. . . . . . . . . . . . . . . . . . 93

6.1 Illustration of the circumstances under which the dynamic ad-
dition of a new vertex will maintain dual feasibility. . . . . . 99

6.2 An execution of the Mobed algorithm for addition of a new
agent to an existing hierarchy. . . . . . . . . . . . . . . . . . . 110

6.3 Mobed’s handling of race conditions using engaged blocks. . . 112
6.4 Average number of rounds for Mobed to reach quiescence for

a single agent addition. . . . . . . . . . . . . . . . . . . . . . 116
6.5 Illustration of the worst case configuration for DFS edit distance.117
6.6 Comparison of the edit distance of DFS to Mobed. . . . . . . 118





Abstract

Automatic Construction, Maintenance, and Optimization of Dynamic Agent
Organizations

Evan Andrew Sultanik

Advisors: William C. Regli, Ph.D. and Ali Shokoufandeh, Ph.D.

The goal of this dissertation is to generate organizational structures that
increase the overall performance of a multiagent coalition, subject to the
system’s complex coordination requirements and maintenance of a certain
operating point. To this end, a generalized framework capable of producing
distributed approximation algorithms based on the new concept of multidi-
rectional graph search is proposed and applied to a family of connectivity
problems. It is shown that a wide variety of seemingly unrelated multia-
gent organization problems live within this family. Sufficient conditions are
identified in which the approach is guaranteed to discover a solution that
is within a constant factor of the cost of the optimal solution. The proce-
dure is guaranteed to require no more than linear—and in some well defined
cases logarithmic—communication rounds. A number of examples are given
as to how the framework can be applied to create, maintain, and optimize
multiagent organizations in the context of real world problems. Finally, al-
gorithmic extensions are introduced that allow for the framework to handle
problems in which the agent topology and/or coordination constraints are
dynamic, without significant consequences to the general runtime, memory,
and quality guarantees.

xi





Chapter 1

Introduction

The goal of this dissertation is to formalize the coordination requirements
of complex systems; the vision is that such systems might distributedly self-
organize in order to increase the overall performance of the coalition. This
phenomenon manifests itself in human societies: Workers often naturally co-
alesce into a leadership structure, as in a corporation. Efficiency is often
achieved through the parallelism inherent in managerial hierarchies. How
can such concepts be extended to the domain of intelligent software agents?
The problem posed by this dissertation can be stated as follows:

Given a notion of the way in which a group of agents need to
interact, what is the best organizational structure for the system
that might expedite the process of coordination while maintaining
a certain operating point?

This shall be referred to as the Dynamic Distributed Multiagent Hierarchy
Generation (DynDisMHG) problem.

The proliferation of mobile and handheld computers—such as laptops,
personal digital assistants, and smart phones—has propelled distributed com-
puting into mainstream society. Over the past decade these technologies have
spurred interest in both decentralized multiagent systems and wireless mo-
bile ad hoc networks. Such networks, however, present many challenges to
information sharing and coordination. Interference, obstacles, and other en-
vironmental effects conspire with power- and processing-limited hardware to
impose a number of challenging networking characteristics. Messages are
routinely lost or delayed, connections may be only sporadically available and
frequently lost, and network transfer capacity is nowhere near that available
on modern wired networks.

Many distributed optimization problems arise by virtue of these networks’
limitations on efficiency and robustness, while others arise merely due to the
networks’ existence. For example, some problems are naturally distributed,

1



2 Chapter 1: Introduction

requiring extra effort to capture and centralize the state of the world such that
a traditional centralized technique can be employed. Furthermore, hardware
limitations can be so severe that there may not even exist a single node
with the resources to compute a global solution. This dissertation addresses
problems that arise in such situations.

When deploying a dynamic distributed system, one must always weigh
the cost incurred by network communication against any benefits of using a
centralized approach. In some cases, the problem may be changing so fast
or the communications overhead so expensive that a centralized algorithm
is not able to maintain stability due to dynamism and/or the fact that the
system state is distributed across the network [1]. It is therefore imperative to
emphasize local decision making and autonomy over a centralized analogue,
insofar as it is possible.

Sensor networks, for example, often communicate over ad hoc networks.
Such networks suffer from high amounts of bit and frame errors, requiring con-
stant retransmission of data. Moreover, mobile ad hoc networks (MANETs)
suffer high packet losses and frame error rates, resulting in less than 50%
of the theoretical maximum throughput being achieved [2]. Since MANET
network topology is inherently in flux, the additional messaging overhead of
a centralized control approach can have a significant negative effect on the
controllability, stability, and overall robustness of the system.

Not all distributed solutions are satisfactory, however. A reasonable dis-
tributed algorithm must run in worst case polynomial time at each agent and
require no more than a linear number of communication rounds to find a so-
lution. The latter requirement is necessary since the global state can always
be centralized in linear time via näıve flooding.

In distributed systems there is very often a logical or societal structure
that is overlaid upon the actual communications network, dictating the pat-
terns in which the agents interact. In the remainder of this dissertation, such
structures shall be interchangeably referred to as agent hierarchies, overlay
networks, interaction graphs, or constrained forests. As an example, note
the interaction graph and network topology in Figure 1.1. The interaction
graph is constructed completely by the agents (possibly as a function of the
problem they are trying to solve), while the network topology is an artifact
of the physical orientation of the agents and is usually not controllable. Iso-
morphism between the overlay topology and the network topology can be
very important; discrepancy between the two can cause unnecessary delays
in messaging. Messaging at the application layer will be dictated by the logi-
cal topology of the interaction graph, which in Figure 1.1 induces a circuitous
route through the network.

This dissertation identifies a family of connectivity problems that are ef-
ficiently distributedly approximable with a bounded performance guarantee
using the general paradigm of the primal-dual schema. This is a bit surpris-



Chapter 1.1: Exemplary Problems & Scenarios 3

Network Topology

Interaction Graph

a1

a2

a3
a4

a5

a6

Figure 1.1: The interaction graph of a multiagent system layered on top of
the corresponding network topology. A message from a2 to a6—necessitated
by the application-layer coordination algorithm and social topology—takes a
circuitous route through the network.

ing because many combinatorial problems formulated as linear programming
optimizations are known to be P-Complete (i.e., they are likely inherently
sequential). It is shown that a wide variety of seemingly unrelated multiagent
organization problems live within this family. Optimally solving many such
problems is NP-Hard, necessitating bounded approximation, vi&., tractable
algorithms that find solutions within a constant factor of optimal. It is ar-
gued in §1.3 that, for distributed multiagent algorithms, “tractable” should
be taken to mean any algorithm whose local runtime is no worse than polyno-
mial in the size of the problem and, more importantly, requires no more than
a linear number of messaging rounds. This dissertation proposes a framework
that meets these requirements. Our examination of a family of problems il-
lustrates that the framework can be applied to create, maintain, and optimize
multiagent organizations in the context of real world problems.

1.1 Exemplary Problems & Scenarios

This section serves to motivate some of the multiagent organization problems
for which this dissertation is concerned.

1.1.1 Location Design & Vehicle Routing Problems

The Location Design and Routing problem asks to find a subset of “depot”
nodes and a spanning forest of a graph such that every connected component
in the forest contains at least one depot [3]. A typical scenario takes the form
of creating an optimal distribution network: Given a network of roads, how
many distribution centers need be built—and in which locations—such that



4 Chapter 1.1: Exemplary Problems & Scenarios

15
0

1
00

150

224
(a) A weighted dis-
tribution network
where a depot can
be opened at any
vertex.

D

D

D

(b) Optimal solu-
tion if the depot
opening cost is ∈
[100, 150].

D

(c) Optimal solu-
tion if the depot
opening cost is ∈
[150, 224].

Figure 1.2: An example weighted distribution network, (a), along with the
optimal spanning forest and depot assignment for various depot opening costs,
(b) & (c).

deliveries can be carried out as quickly as possible? What if the cost of build-
ing distribution centers is nonuniform with respect to location? Scenarios are
not strictly limited to logistical domains; in computer networking and mul-
tiagent systems, for example, the unavailability of a central server/database
necessitates data redundancy in the system [4]. Many peer-to-peer systems,
such as service oriented computing platforms and distributed hash tables,
promote certain nodes as supernodes. In this setting, the supernodes are
akin to the depots in the location design and routing problem. The problem
of selecting which subset of peers should perform a certain role such that
they are well dispersed in the network—what is referred to as the supernode
selection problem [5]—is therefore equivalent to the location design and rout-
ing problem. Similar problems also appear in the fields of sensor networks
and peer-based grid computing [6]. It is important to consider distributed
solutions to this problem as it is naturally distributed; extra effort is required
to centralize the problem. Furthermore, as is the case in many sensor net-
works, there may not be a single node with adequate resources to solve the
global problem. Computation is therefore subject to the same topology as
the network itself. Figure 1.2 gives an example of a weighted distribution
network, Figure 1.2a, along with two optimal solutions, Figures 1.2b & 1.2c,
depending on the cost of opening a depot. In general, finding a set of depots
and a spanning forest of minimal weight is NP-Hard [7].



Chapter 1.1: Exemplary Problems & Scenarios 5

1.1.2 Art Gallery Problems

Art gallery problems generally ask to find the minimum number of guards
required to observe the interior of a polygonal area [8]. Over the past thirty
years since their proposition, these problems have been thoroughly studied
by the computational geometry community. Interest in art gallery problems
has seen a recent resurgence given their application to a number of areas of
multiagent systems. For example, many robotics, sensor network, wireless
networking, and surveillance problems can be mapped to variants of the art
gallery problem [9]. Since such problems are naturally distributed, a logical
approach is to apply the multiagent paradigm (i.e., each guard is an agent).

As a motivating scenario, consider a wireless sensor network such as the
one pictured in Figure 1.3. Since one goal of the network is to maximize
survivability, it may be desirable to conserve battery power by having as few
sensors active as necessary, especially for sensors with wide overlapping fields
of view. The problem is then to find a minimum subset of sensors that need
to remain active in order to provide a desirable level of coverage. As another
scenario, consider a group of mobile robots each equipped with a wireless
access point. The objective of the robots is to maximally cover an area
with the wireless network. As the robots are traveling between waypoints,
though, it is highly likely that there will be a large amount of overlap in the
coverage. Therefore, in order to save power, the robots might want to choose
a maximum subset of robots that can lower their transmit power while still
retaining coverage. The difficulty in each of these scenarios is for the agents to
collectively find the solution without relying on centralization of computation.
Centralization is infeasible either due to lack of resources (i.e., no single agent
has powerful enough hardware to solve the global problem) or due to lack
of time (i.e., centralizing the problem will take at least a linear number of
messaging rounds). The decision versions of these problems are equivalent
to art gallery problems which are known to be NP-Complete [10, 11] and
APX-Hard [12].

1.1.3 Steiner Network Problems

Steiner network problems generally ask to find a minimum weight set of edges
that interconnect subsets of a graph’s vertices. Many variants of Steiner net-
work problems are NP-Complete, one of which was among Karp’s original
21 NP-Complete problems [13].

The applications of Steiner networks to distributed systems are manifold.
For example, a common approach to ad hoc multicast networking is to con-
struct an acyclic overlay network connecting all nodes in a group, such that
multicast packets can be broadcast across the overlay network [14, 15].



6 Chapter 1.1: Exemplary Problems & Scenarios

a2
a1

a3

a4

(a) An ad hoc sensor network wirelessly coordinating
to optimize interior coverage.

a2

a3

a1

a4

(b) Dynamically-generated orientation.

Figure 1.3: In (a), an ad hoc sensor network must distributedly reorient. In
(b), agents a1 and a4 rotate to guard the interior.



Chapter 1.1: Exemplary Problems & Scenarios 7

1.1.4 Dynamic Organization Problems

It is useful to impose organizational structure over multiagent coalitions. Hi-
erarchies, for instance, allow for compartmentalization of tasks: If organized
correctly, tasks in disjoint subtrees of the hierarchy may be performed in
parallel. Intuitively, the shallower the hierarchy the more subordinates per
manager, leading to more potential for parallelism. The difficulty lies in
determining a minimum depth hierarchy that is isomorphic to the problem
being solved. In a business, for example, there is very little sense in assigning
an accountant from the billing department as the superior of a marketing
associate. Given a notion of the way in which the agents need to interact,
the initial problem, then, is to determine the best hierarchy that might ex-
pedite the process of coordination. Henceforth we will refer to this problem
as the Dynamic Distributed Multiagent Hierarchy Generation (DynDisMHG)
problem.

Solutions to the DynDisMHG problem currently have direct application
in the field of multiagent systems, including distributed problem solving [16],
cooperative multiagent systems [17], distributed constraint reasoning (DCR),
command and control, mobile ad hoc networks (MANETs), sensor nets, and
manufacturing. For example, the computation time required by most com-
plete DCR algorithms is determined by the topology of a hierarchical ordering
of the agents [18, 19, 20, 21]. The difficulty is that (1) most algorithms as-
sume that an oracle exists to provide an efficient hierarchy; and (2) the few
existing solutions to the Multiagent Hierarchy Generation problem are either
centralized or do not deal well (or at all) with dynamic addition and removal
of agents from the hierarchy.

Let us consider the multiagent variable assignment problem pictured in
Figure 1.4. Dotted lines represent connections in the interaction graph, vi&.
constraints between variables. It is assumed that the variable assignment
algorithm to be employed (e.g., a DCR algorithm) only requires communi-
cation between agents whose variables are constrained to each other. The
network topology is linear; any messages sent between hosts h1 and h3 must
be relayed through h2. Observe that the interaction graph is decoupled from
(i.e., non-isomorphic to) the network topology. For instance, any messages
agent a2 might have to send a4 regarding their constrained variables v5 and v9

must be routed through host h2. By reorganizing the interaction graph (i.e.,
the variable/agent mapping and/or the agent/host mapping), it may be pos-
sible to reduce the overhead imposed by network routing, thereby reducing
the cost of coordination.

Other potential applications of a solution to DynDisMHG exist in MANETs.
Protocols such as Fireworks [22] overlay a communications structure onto a
wireless network, which is highly dynamic as the nodes are constantly mov-
ing. There is the potential for cross-layer design: If the mobile nodes are
executing a multiagent system, a communications structure could be created



8 Chapter 1.1: Exemplary Problems & Scenarios

Host h1 Host h2 Host h3

Agent a1

Agent a2

Agent a3 Agent a4
v2v1 v3

v4 v5

v6 v8v7 v9

Network Routing

Figure 1.4: A multiagent variable assignment problem mapped atop a peer-
to-peer network. The topology is linear: h1 ↔ h2 ↔ h3. Dotted lines repre-
sent connections in the interaction graph, vi&. constraints between variables.

to exploit knowledge of both network and application layer properties.

There has been interest in DCR algorithms that are able to solve con-
stantly changing problems [23, 24], including those in which agents can dy-
namically enter and leave the hierarchy [25]. All existing provably supersta-
bilizing (i.e., “complete”) dynamic DCR algorithms, however, make a similar
assumption to their static DCR counterparts: that a separate algorithm exists
to generate and maintain the dynamically changing agent hierarchy.

Similar to dynamic DCR, there has been much interest in hierarchies of
holonic multiagent systems (or holarchies), with wide ranging applications in
distributed problem solving and manufacturing [26]. Some have even claimed
that a prerequisite for innovation in multiagent systems is the capability for
subsets of agents to dynamically create ad hoc hierarchies, called “adhocra-
cies” [27]. Empirical evaluations have concluded that agents in a dynamic
hierarchy are able to perform distributed problem solving better than agents
in a static hierarchy [28]. It is anticipated that solutions to the problem of dis-
tributed multiagent hierarchy/holarchy/adhocracy generation will motivate
many other applications.

1.1.5 The Pseudotree Creation Problem

Agent hierarchies, often called “variable orderings,” are employed in many
Distributed Constraint Reasoning (DCR) algorithms, usually as a means to
parallelize computation for portions of the constraint graph. Most provably
optimal DCR algorithms require a special hierarchy in the form of pseu-
dotree [29, 30]. Furthermore, the computational complexity of such algo-
rithms is often a function of the breadth of the tree, since branches in the
tree are what allow for parallelism. One metric for the amount of possible
parallelism in a tree is induced-width; in general, the problem of finding a
minimum-induced-width spanning tree of a graph is NP-Hard [31].



Chapter 1.1: Exemplary Problems & Scenarios 9

a1

a2

a3

a4

a5

a6

(a)

a1

a2

a3

a4

a5

a6

(b)

a1

a2

a3

a4

a5

a6

(c)

Figure 1.5: a6, whose interaction graph neighbors are a2 and a5, requests
to join the existing hierarchy in (a). If DFS is simply re-run the hierarchy
in (b) results. Note that the parents of both a4 and a5 change. The optimal
hierarchy in terms of minimal depth and edits—which could not have been
produced by a DFS traversal—is in (c).

A valid hierarchy inherently has the property that each pair of neigh-
boring agents in the interaction graph are either ancestors or descendants of
each other in the hierarchy. This ensures that no interaction will necessarily
occur between agents in disjoint subtrees. Therefore, interactions in disjoint
subtrees may occur in parallel.

It is relatively trivial to prove that a simple depth-first traversal of the
interaction graph will produce a valid hierarchy. Distributed algorithms for
performing such a DFS traversal are known [32, 33]. Heuristics for guiding the
DFS traversal for multiagent problem solving have also been proposed [34]. A
general problem with DFS-based approaches, though, is that they will often
produce sub-optimal hierarchies (i.e., trees that are unnecessarily deep). For
example, the hierarchy in Figure 1.5b might have been generated using a DFS
traversal, however, the best-case hierarchy in Figure 1.5c could not have been
generated using DFS.

A decentralized algorithm for creating valid pseudotree hierarchies has
been proposed [29], however, its efficiency relies upon a priori knowledge
about the maximum block size of the interaction graph, and it is also unclear
how it might be extended to dynamic hierarchies. Some DCR algorithms con-
struct a DFS-based pseudotree as the problem is being solved [32, 18, 35], and
yet another has been proposed to handle a relaxed version of pseudotrees [36],
however, it is likewise unclear how these algorithms might be extended to han-
dle the intricacies of concurrency imposed by dynamic hierarchies. A number
of algorithms based on asynchronous backtracking have been developed that
dynamically reorder the agents within the hierarchy as the problem is being
solved [28, 37], but this approach has only been explored in terms of static
DCR problems and it is unclear how it might be extended to problems in
which agents can dynamically be added and removed.

DFS-based algorithms are relatively inexpensive (most require only a lin-



10 Chapter 1.2: Overview of the Proposed Approach

ear number of rounds), so an argument might be made that DFS could sim-
ply be re-run every time the tree changes, possibly through the use of a
self-stabilizing algorithm. In certain instances, however, such an approach
might cause a large disparity between the original hierarchy and the hierar-
chy resulting after the perturbation, as pictured in Figure 1.5. Continuing
the example of a business, the marketing department should not necessarily
have to change its managerial structure every time a new accountant is hired
in the billing department. An approach with a minimal number of edits to
the existing hierarchy is therefore desirable. One way to ensure a constant
number of edits is to simply add new agents as a parent of the root of the hi-
erarchy. The problem with this method, however, is that if many new agents
are added then the hierarchy will tend toward a chain, which is the worst
case topology in terms of parallelism. What is ultimately desirable, then, is
an approach that both minimizes edit distance between successive hierarchies
and also minimizes tree depth.

1.2 Overview of the Proposed Approach

A thesis of this dissertation is that the aforementioned motivating scenarios,
and others like them, can all be reduced to connectivity problems—problems
in which each vertex requires to be connected to some subset of the other
vertices. Such problems occur when a group of agents need to efficiently
communicate with each other subject to a set of constraints on their topol-
ogy. The idea of reducing such problems to the connectivity domain is not
new; it has been espoused by many in the approximation algorithms com-
munity. A detailed example of how and why these reductions occur is given
below in §2.3 after the introduction of some requisite formalism. A primary
contribution of this dissertation, then, is introduction of a novel generalized
framework capable of automatically producing distributed approximation al-
gorithms that can solve a large family of connectivity problems. In doing
so we have a way of constructing and optimizing organizational structures
in distributed systems (subject to prescribed constraints on the underlying
topology).

The ability to distributedly construct, optimize, and maintain organiza-
tional structures and overlay networks with certain desirable properties has
direct application in multiagent systems, including the fields of:

• distributed problem solving [16]: computation can be parallelized
by constructing high degree overlay networks;

• cooperative multiagent systems [17]: Pareto-optimal orderings can
be found through overlay networks;

• distributed constraint reasoning [30]: construction of pseudotrees



Chapter 1.3: Evaluating Multiagent Systems 11

(requisite for most provably optimal distributed constraint reasoning
algorithms);

• command and control [38]: determining optimal control hierarchies;

• mobile ad hoc networking [15]: creating Steiner networks for effi-
cient multicast;

• sensor networks [39, 40]: power management; and

• multiagent manufacturing [26]: distributed task allocation.

Once a solution is found, small perturbations in the problem may occur.
For example, a node may either connect to or disconnect from the network.
If the change is minor and/or localized, it stands that a new solution might
be easily found without resorting to re-solve the problem from scratch. Ad-
ditional contributions of this dissertation are the discovery of methods that
allow for dynamic maintenance of the optimized overlay networks as the prob-
lem changes, when possible.

1.3 Evaluating Multiagent Systems

Many connectivity problems are NP-Hard, such as the famous Traveling
Salesman Problem, Vertex Cover, &c., meaning that finding optimal solutions
to the problems is likely to be intractable. Efficient greedy, heuristic, and local
search algorithms do exist to solve such problems, however, if/when a solution
is found there is no way of knowing how close the solution is to optimal.
Some distributed optimization algorithms—the Adopt family of algorithms,
for example [19, 41]—provide a means of terminating when a solution is found
that is within a given delta of optimal. This can be problematic, however, if
the cost of the optimal solution is unknown. What is ultimately desirable is a
theoretical bound on the distance from the optimal solution as a factor (i.e.,
a relative performance guarantee). In approximation algorithm parlance, an
algorithm that is ε-OPT produces solutions that are no worse than ε times
the cost of the optimal solution. Note that this is different than the notion
of “k-optimality” in the distributed constraint reasoning literature, wherein
the term refers to a solution in which no subset of k or fewer agents working
together can improve the cost of the overall solution [42].

Development of complexity theory has been one of the major achieve-
ments of computer science, as it allows for evaluation and comparison of the
efficiency of algorithms in a scalable way [43]. Complexity theory proposes
evaluation of algorithms in terms of both the number of times the most ex-
pensive operation is performed and the amount of data that are stored in
memory. These quantities are taken as a function of the size of the prob-
lem. While such metrics do not reveal how much actual time is required



12 Chapter 1.3: Evaluating Multiagent Systems

Space Complexity

C
o
m
p
u
ta

ti
o
n
a
l
C
o
m
p
le
x
it
y

c log n n n log n nc

n
n

lo
g
n

n
c

cn
n

!

b

f

a

d

c

h

e

g

Stable

a Heapsort

b Merge sort

c Introsort [45]

d Bubble sort

e Strand sort

f Quicksort†

g Brute force (DFS)

h Bogosort

†Assuming that memory pointers require logarithmic space.

Figure 1.6: Worst-case time and space complexities of a number of sorting
algorithms.

for a computation on a certain problem instance, they do allow for interpo-
lating how techniques scale as the problem size increases. The assumption
that computation speed and memory will double every couple years makes
a polynomial factor in the cost irrelevant in the long term [43, 44]. As an
example of complexity of computation, Figure 1.6 plots a number of common
sorting algorithms with respect to their asymptotic worst-case computational
and memory complexities. Sometimes the efficiency of algorithms is at the
expense of another metric, such as the stability of the sort (i.e., whether or
not the relative ordering of equally weighted entries is preserved). Nonethe-
less, a priori analysis can inform a systems engineer as to which algorithm
should be employed in a given domain. Complexity theory can even be used
to devise non-uniform algorithms that dynamically choose the best sorting
technique at runtime given properties of the input [45].

One of the primary challenges is in creating efficient distributed asyn-
chronous algorithms; these types of algorithms are difficult to design since
each computing device does not necessarily know the state of the others at
any point in time. Synchronous distributed algorithms, on the other hand,
have the disadvantage of being forced to execute at the speed of the slowest
computing device, and require a globally synchronized clock [46, 18]. Asyn-



Chapter 1.3: Evaluating Multiagent Systems 13

chronous algorithms have non-deterministic program flow dependent on ran-
dom fluctuations in communications latency, bandwidth and message loss; a
single distributed algorithm may perform drastically differently in one net-
work setting than in another. It is therefore unclear how the metrics used in
traditional complexity theory might be extended to distributed algorithms.

In the context of distributed algorithms, communications can be measured
on a third axis as in Figure 1.7. For example, the Distributed Stochastic Algo-
rithm (DSA) [47] requires very little memory at each node and very little local
computation, but has a relatively high worst-case communications overhead
(possibly sending an exponential number of messages in asynchronous net-
works). The Adopt algorithm [19] also has a high communications overhead
and even higher memory and local computation complexities, however, Adopt
has guaranteed optimality and bounded approximation, both of which DSA
lacks. The Distributed Pseudotree Optimization Procedure (DPOP) [20] has
the highest memory and computation complexity, but very low communica-
tions overhead. Such analysis may be sufficient to inform a systems engineer
as to which algorithm might be best suited for a given domain. Probabilistic
methods (notably from Queuing Theory [48]) are sometimes used to compare
distributed algorithms, but more often than not discrete event simulation is
required.

Virtually all literature on measuring communication complexity with re-
spect to the asymptotic complexity of distributed algorithms consists of defin-
ing metrics that project the communication axis onto the computation axis [51,
52, 53, 54]. Doing so, however, does not capture the multivariate nature of
communication. For example, a message sent over the Internet from one side
of the world to the other will always1 have at least 66 milliseconds of la-
tency2. A sensor network may have very low latency but may be constrained
by bandwidth/power. Therefore, despite transmitting an equivalent number
of messages, a single distributed algorithm that is deployed on the Inter-
net may have very different asymptotic properties than the same algorithm
deployed on a sensor network; properties that cannot be solely captured in
the computation of the algorithm (e.g., power usage from bandwidth). As-
suming local computation is tractable (e.g., polynomial time), then the time
required for a distributed algorithm to reach quiescence (i.e., to terminate)
can be measured by bounding the time required to transmit the longest causal
chain of messages that needs to be sent [51, 53]. Therefore, in contrast to
these other measures, it is of utmost importance to minimize the number of
communication rounds in distributed algorithms.

In cooperative multiagent systems agents are non-adversarial insofar as

1Assuming correctness of the Special Theory of Relativity, correctness of the Principle
of Causality, and lack of subterranean networks.

2Taking the diameter of the Earth as 12,756 km and the speed of light as 299,792,458
m/s.



14 Chapter 1.3: Evaluating Multiagent Systems

Space Complexity

C
o
m
p
u
ta

ti
o
n
a
l
C
o
m
p
le
x
it
y

c log n n n log n nc

n
n

lo
g
n

n
c

cn
n

!

C
om

m
un
ic
at
io
n

a

Optim
al

Non-Optim
al b

c

d

a DSA [49]

b (BnB-)Adopt [19, 41]

c DPOP [20]

d MB-DPOP(1) [50]

Figure 1.7: Asymptotic complexity bounds for three distributed constraint
optimization algorithms.



Chapter 1.4: Contributions 15

their goal is to optimize some global objective [17]. In such systems it may
be more efficient to have agents disseminate the global state using a gossip
algorithm [55, 56, 57], for if every agent has a reasonable belief as to the
global state then each can locally employ a centralized approximation algo-
rithm to solve the problem. A näıve gossip algorithm can disseminate global
state to the entire network in a number of communication rounds equal to
the diameter of the network, which will in the worst case be O(n) rounds.
Therefore, if all agents in the system are trusted and have hardware sufficient
to solve the global problem centrally, then there is little sense in deploying a
distributed algorithm that runs in ω(n) rounds.

It is therefore a primary goal of this dissertation to create algorithms that
balance the resource usage of memory, computation, and messaging.

1.4 Contributions

This dissertation shows that a large family of multiagent organization prob-
lems can be solved efficiently in a distributed manner. Many of these prob-
lems are NP-Hard and are therefore intractable in centralized, sequential
computation. We show that, in allowing distribution and exploiting locality
in the primal-dual schema, speedups are achievable. In fact, we show that
distributed algorithms can approximate a solution in linear time and, un-
der certain well defined conditions, can even quiesce in polylogarithmic or
even logarithmic time. This is a bit surprising because many of the problems
soluble to our approach are known to be P-Complete.

These claims are supported by distributed algorithms recently discovered
by Sozio [58], Sadeh [59], & al. These approaches, however, lack the desired
generality and approximation/messaging bounds, the attainability of which
is demonstrated herein.

The primary novel contribution of this dissertation is therefore a gen-
eralized distributed algorithm that can solve constrained forest problems
with a constant optimization bound in no worse than linear communication
rounds. We introduce such an algorithm called the Generalized Distributed
Constrained Forest Algorithm for Constrained Multidirectional Search. We
show that the algorithm is correct and complete (i.e., it is guaranteed to find
a feasible solution if one exists). We also provide a series of examples of how
to instantiate this framework for specific problems, including Steiner network
problems, art gallery/dominating set problems, and location design & vehicle
routing problems.

Strong bounds on the convergence of the algorithm alone is not sufficient,
however. We therefore prove that if the edge weights of the input graph
are mapped to a metric space that conforms to a specific set of constraints,
then the solutions produced by our algorithm are guaranteed to be 2-OPT .
We show that this requirement is necessary to achieve the speedup from



16 Chapter 1.4: Contributions

concurrency. If the input graph is not weighted in a sufficient metric space
for the theoretical guarantees to hold, then we show that there exists an ε such
that the solution our algorithm discovers is with high probability ε-optimal.

The ultimate problem we are working toward solving is that of dynamic
multiagent organization. Ideally, the algorithm should not have to completely
re-optimize subsequent to every perturbation of the problem. Therefore, we
identify a family of events from which our algorithm can recover faster than
having to re-optimize from scratch. There are also instances when the topo-
logical constraints on the desired forest are too expressive to be captured by
our current primal-dual model. In some cases the instantaneous approxima-
tion bound on the solution is not as important as the stability of the solution.
For example, for highly dynamic problems it may be better to have an orga-
nizational structure that is relatively fixed, as opposed to a structure that is
in constant flux as it tries to keep pace with the topological constraints of the
ever changing problem. For such cases, we introduce an algorithmic extension
called Multiagent Organization with Bounded Edit Distance (Mobed).



Chapter 2

Optimization Using the
Primal-Dual Schema

This chapter covers the background mathematical constructs on top of which
the algorithms that are later introduced in this dissertation are based.

2.1 Approximation Algorithms

A common procedure for approximating solutions to hard integer program-
ming problems is illustrated in Figure 2.1. First, the hard optimization prob-
lem is formulated as an integer program (IP) whose integrality constraints
are relaxed to produce a continuous optimization problem. The continuous
problem is then solved and converted back to a feasible solution to (IP). The
difficulty is that solving the continuous relaxation can be very expensive for
problems with many constraints. Let us consider the Steiner network prob-
lem as an example. Given a subset of a network’s vertices T ⊆ V , the Steiner
network problem can be represented as the following integer program [60]:

minimize
∑
e∈E

w(e)xe

subject to:

x(δ(S)) ≥ f(S), ∀S ⊂ V : S 6= ∅
xe ∈ {0, 1}, ∀e ∈ E,

(IP)

where each variable xe is an indicator as to whether the edge e is a member
of the final Steiner network, w(e) is the weight of edge e, δ(S) is the set of
edges having exactly one endpoint in S, x(F ) 7→

∑
e∈F xe, and f : 2V →

{0, 1} is a function such that f(S) = 1 if and only if ∅ 6= S ∩ T 6= T . A

17



18 Chapter 2.2: The Primal-Dual Schema

Optimization Problem

Integer Programming Formulation (IP)

Relaxed to a Continuous Optimization Formulation

Solution to the Continuous Problem

Approximated Solution to (IP)

Figure 2.1: Standard procedure for approximating solutions to hard integer
programming problems.

continuous optimization relaxation for this integer program is the following
linear program:

minimize
∑
e∈E

w(e)xe

subject to:

x(δ(S)) ≥ f(S), ∀S ⊂ V : S 6= ∅
xe ≥ 0, ∀e ∈ E.

(LP)

The difficulty arises due to the fact that the ∀S ⊂ V quantification expands
to an exponential number of constraints. Much work has been done to over-
come this apparent obstacle, resulting in the realization that not all of the
constraints need be evaluated. The process by which this can be accomplished
is reviewed in the following sections.

2.2 The Primal-Dual Schema

The idea behind the primal-dual schema is that the dual formulation of
(LP)—the continuous optimization problem (a.k.a. the primal)—can be used
to guide the solution of (LP) [61]. The dual formulation for the Steiner net-



Chapter 2.2: The Primal-Dual Schema 19

work problem is

maximize
∑
S⊂V

f(S)yS

subject to: ∑
S:e∈δ(S)

yS ≤ we, ∀e ∈ E

yS ≥ 0, ∀S ⊂ V : S 6= ∅.

(D)

It is a folklore result that the solution to the dual is a lower bound on the
solution to the primal. This property is called weak duality . Furthermore,
the optimal solution to the dual will have the same value as the optimal
solution to the primal. This property is called strong duality . Finally, the
complementary slackness property ensures that a primal variable can have a
positive value only if its associated dual constraint is tight [62]. These prop-
erties conspire to produce a general method for sequentially approximating
hard integer programming problems, which is often called the primal-dual
strategy or schema. This general method is given in Algorithm 1.

Algorithm 1 The general primal-dual schema, as adapted from [63].

1: procedure Primal-Dual(IP)
2: Let (CO) be the continuous optimization relaxation of (IP).
3: Let (D) be the dual to (CO).
4: Initialize vectors x = 0 and y = 0 which are, respectively, the solutions

for (CO) and (D). /* Note that y will initially be dual feasible, but x
may be primal infeasible. */

5: while x is primal infeasible do
6: While maintaining dual feasibility, deterministically increase the

dual values yi until one dual variable becomes tight (i.e., that variable
cannot be increased any more without breaking a dual constraint).

7: For a subset of the tight dual constraints, increase the primal vari-
able corresponding to them by an integral amount.

8: end while
9: The cost of the dual solution is used as a lower bound on OPT .

10: end procedure

The first algorithm using the primal-dual schema was devised to solve the
assignment problem and is due to Kuhn [64], who named it the “Hungarian
Method”. The method was later dubbed primal-dual by Dantzig, Ford, and
Fulkerson [65]. Although they did not originally state their work as using
the primal-dual method, Bar-Yehuda and Even proposed the first approxi-
mation algorithm based on the schema in solving the weighted vertex cover
problem [66].



20 Chapter 2.3: Proper Functions

Proposing distributed algorithms using the primal-dual schema has been
the subject of study of a number of recent results [67, 59]. Problems that have
been studied using this schema include Steiner problems [68], point-to-point
connectivity problems [69], distributed scheduling [70], vertex cover [71, 72],
facility location [58], and k-connectivity [59]. Some of these approaches pro-
vide theoretical runtime bounds and others provide theoretical approximation
bounds, however, almost none provide both. The only approach that does
provide both approximation and runtime bounds is due to Sadeh [59], how-
ever, the runtime bound is superlinear. What these approaches seem to miss
is the following observation: Pushing up the dual variables until they become
tight (i.e., lines 6 and 7 of Algorithm 1) appears to require only local informa-
tion. This dissertation shows that, with proper bookkeeping, the entire while
loop in Algorithm 1 can be executed in parallel between agents. In doing so,
it is possible to get good bounds on both runtime and optimality. Creating
distributed algorithms that realize this claim is the primary contribution of
this dissertation.

2.3 Generalizing the Schema:
Proper Functions

One of the early generalized applications of the primal-dual technique to
approximation algorithms was proposed by Goemans and Williamson [73, 14].
Recall that in the formulation of the Steiner network problem (q.v. §2.1),
the primal constraints are defined using an indicator function f . For the
case of the Steiner network problem, f is defined such that f(S) = 1 if
and only if ∅ 6= S ∩ T 6= T . The intuition behind this function is that
a partially constructed portion of the network, S ⊆ V , is active (i.e., it
needs to continue growing) if the network does not yet contain all necessary
vertices in T . Goemans and Williamson had the brilliant insight that by
simple modification to this f function the same paradigm can be used to
solve a number of different connectivity problems [73]. For example, let T
be the set of depot vertices and let R be the set of non-depot vertices; then
setting f(S) 7→ 1 if and only if S ∩ T = ∅ will solve the Location Design
and Routing Problem. Examples of other functions that solve preexisting
connectivity problems are given in Table 2.1.

A function on the powerset of a set of vertices, f : 2V → {0, 1}, is said to
be proper if the following are true:

Null Property: f(∅) = 0;

Symmetry Property: ∀S ⊆ V : f(S) = f(V \ S); and

Disjointness Property: ∀A,B ⊆ V : (A ∩ B = ∅) =⇒ f(A ∪ B) ≤
max{f(A), f(B)}.



Chapter 2.3: Proper Functions 21

N
a
m
e

P
r
o
b
l
e
m

f
(S

)
=

1
iff
..
.

M
in

im
u

m
-w

ei
gh

t
p

er
fe

ct
m

at
ch

in
g

F
in

d
a

m
in

im
u

m
-c

os
t

se
t

of
n

on
-a

d
ja

ce
n
t

ed
g
es

th
at

co
ve

r
al

l
v
er

ti
ce

s.
|S
|i

s
o
d

d
.

T
-j

oi
n

[7
3]

G
iv

en
an

ev
en

su
b
se

t
T

of
ve

rt
ic

es
,

fi
n

d
a

m
in

im
u

m
-c

os
t

se
t

of
ed

ge
s

th
at

h
as

o
d

d
d

eg
re

e
at

v
er

ti
ce

s
in
T

an
d

ev
en

d
eg

re
e

at
ve

rt
ic

es
n

o
t

in
T

.

|S
∩
T
|i

s
o
d

d
.

M
in

im
u

m
sp

an
n

in
g

tr
ee

/f
or

es
t

F
in

d
a

m
in

im
u

m
w

ei
gh

t
fo

re
st

th
at

m
a
x
im

iz
es

co
n

n
ec

ti
v
it

y
b

et
w

ee
n

ve
rt

ic
es

.
∃u
∈
S
,v

/∈
S

:
u

;
v
∈
G

.

G
en

er
al

iz
ed

S
te

in
er

tr
ee

F
in

d
a

m
in

im
u

m
-c

os
t

fo
re

st
th

at
co

n
n

ec
ts

a
ll

ve
rt

ic
es

in
T
i

fo
r
i

=
1,
..
.,
p
.

∃i
∈
{1
,.
..
,p
}

:
∅
6=
S
∩
T
i
6=
T
i.

P
oi

n
t-

to
-p

oi
n
t

co
n

n
ec

-
ti

on
G

iv
en

a
se

t
C

=
{c

1
,.
..
,c
p
}

of
so

u
rc

es
a
n

d
a

se
t

D
=
{d

1
,.
..
,d
p
}

of
d

es
ti

n
at

io
n

s
in

a
g
ra

p
h
G

=
〈V
,E
〉,

fi
n

d
a

m
in

im
u

m
-c

os
t

se
t
F

of
ed

g
es

su
ch

th
at

ea
ch

so
u

rc
e-

d
es

ti
n

at
io

n
p

ai
r

is
co

n
n

ec
te

d
in

F
.

|S
∩
C
|6=
|S
∩
D
|.

P
ar

ti
ti

on
in

g
(w

/t
ri

an
gl

e
in

eq
u

al
it

y
)

F
in

d
a

m
in

im
u

m
-c

os
t

co
ll

ec
ti

on
of

ve
rt

ex
-

d
is

jo
in

t
tr

ee
s,

p
at

h
s,

or
cy

cl
es

th
at

co
ve

r
a
ll

ve
r-

ti
ce

s.

S
6≡

0
(m

o
d
k
).

L
o
ca

ti
on

d
es

ig
n

/r
ou

ti
n

g
S

el
ec

t
d

ep
ot

s
am

on
g

a
su

b
se

t
D

of
ve

rt
ic

es
o
f

a
gr

ap
h
G

=
〈V
,E
〉a

n
d

co
ve

r
al

l
v
er

ti
ce

s
in
V

w
it

h
a

se
t

of
cy

cl
es

,
ea

ch
co

n
ta

in
in

g
a

se
le

ct
ed

d
ep

o
t,

w
h

il
e

m
in

im
iz

in
g

th
e

su
m

of
th

e
fi

x
ed

co
st

s
o
f

op
en

in
g

d
ep

ot
s

a
n
d

th
e

su
m

of
th

e
co

st
s

o
f

th
e

ed
ge

s
in

th
e

cy
cl

es
.

∅
6=
S
⊆
V
.

Table 2.1: Constrained forest problems and their associated indicator func-
tions.



22 Chapter 2.4: Conclusions

If f is proper then Goemans and Williamson’s algorithm has two additional
properties: the algorithm will run in polynomial time, and the solution it
produces will be 2-OPT (i.e., the cost of the solution will be no more than
two times the cost of the optimal solution). Goemans and Williamson named
the class of problems representable as proper functions as constrained for-
est problems. Many constrained forest problems are NP-Hard, hence the
motivation to find an approximate solution in polynomial time.

The space of functions amenable to solution via the primal-dual schema
has also been expanded to include other families. For example, both well
spaced functions [60] and supermodular functions [74] have been investigated.
A function f : 2V → {0, ρ1, ρ2, . . . , ρk} is said to be well spaced if ∀i ∈
{1, 2, . . . , k − 1} : ρi+1 ≥ |A|ρi, where A is the set of active vertices. A
function f : 2V → Z is said to be weakly supermodular if f(V ) = 0 and for
every A,B ⊆ V at least one of the following holds:

• f(A) + f(B) ≤ f(A \B) + f(B \A)

• f(A) + f(B) ≤ f(A ∩B) + f(A ∪B).

Note that proper functions are weakly supermodular; an algorithm for solving
constrained forest problems defined by weakly supermodular functions was

first given in [75] and has an approximation factor of 2

|A|∑
i=1

1

i
. This was later

improved to a factor of 2 by Jain in [74].

2.4 Conclusions

While the primal-dual schema has been known for many years, it did not reach
its current level of awareness until the approximation algorithms community
took hold of it in the 1990s. Thanks to the discoveries of Aggarwal [60],
Goemans & Williamson [75], Vazirani [61], & pl. al., it is now known that
the schema works very well for bounded approximation. They were able to
realize that not all of the exponential constraints in the primal and exponen-
tial variables in the dual need to be represented, let alone computed, in order
to approximate a solution with bounded optimality in polynomial time. Fur-
thermore, a large family of problems defined by proper functions and their
extensions are amenable to the schema [14].

Of the few distributed approaches for solving constrained forest problems
that do exist, some provide theoretical runtime bounds and others provide
theoretical approximation bounds, however, almost none provide both and
absolutely none have sublinear runtime bounds. A major contribution of this
thesis is the discovery that further efficiency improvements can be achieved
by reconstructing the schema in a distributed manner to exploit the relative



Chapter 2.4: Conclusions 23

locality of the interactions in the algorithm. We will show that for a large
family of problems we can maintain bounded approximation in a linear—and
in some cases even polylogarithmic—number of phases.

In the next chapter a new distributed algorithm for solving constrained
forest problems is introduced based upon the primal-dual schema. The algo-
rithm is guaranteed to run in a linear number of communication rounds and,
in certain well defined circumstances, logarithmic communication rounds.
Furthermore, if the problem is encoded properly, the solution our algorithm
discovers is guaranteed to be no worse than 2 times the cost of optimal.
In Chapter 4 it will be shown that—even without proper encoding of the
problem—the expected value of the approximation bound will be constant
for a large family of edge weight distributions. In Chapter 5, examples are
given as to how this framework can be instantiated (e.g., furnished with
distributed protocols) for specific problems and their associated proper func-
tions. Also in that chapter the approach is empirically evaluated for several
real-world domains. Finally, in Chapter 6 we provide algorithmic extensions
that can handle dynamic changes of the underlying structure.





Chapter 3

The Generalized
Distributed Constrained
Forest Algorithm

Given a weighted graph with specified start and goal vertices, a bidirectional
graph search performs two simultaneous searches: one initiated from the start
vertex and the other from the goal vertex. When there is an overlap in the two
searches’ fringes, a path between the start and goal is discovered. Further-
more, if the goal-test function is modified such that the algorithm terminates
when both searches expand the same node and an optimal search algorithm
is used (e.g., A∗), then the resulting path will be of minimum length. Now
consider the generalization of this problem in which the search is further con-
strained by specifying an arbitrary number of intermediate vertices that must
be interconnected through some path. We call such intermediate vertices ter-
minals. This generalization captures a number of different problems—many
of which are NP-Hard—including path planning with waypoints, finding a
minimum length tour (vi&. the traveling salesman problem), and the Steiner
tree problem [60], which are collectively called constrained forest problems.

The idea of multidirectional search has existed for quite some time in
the context of unconstrained search [76], however, there is very little in
the literature on multidirectional constrained search. An algorithm was re-
cently discovered for the related problem of distributedly clearing the entire
search space [77]. There have also been a number of resent results in the
context of multiagent path planning, such as the AA∗ algorithm employed
in the AGENTFLY framework [78], however, these approaches are primar-
ily concerned with online planning and distributed deconfliction. Similar
speedups in graph search have also recently been achieved through disk-

25



26 Chapter 3.1: Multidirectional Graph Search

based search [79]. A family of distributed best-first search algorithms also
exists [19], however, this is in the context of distributed constraint reasoning
and not general graph search.

We define multidirectional graph search as the process of finding a tree
in the search space that connects all of the terminals by simultaneously per-
forming a search emanating from each terminal. Given one intelligent agent
per terminal, this approach is inherently distributable, with potential for sig-
nificant speedups from concurrency. The difficulty is in proving that

1. the concurrent searches will not induce a cycle in the output;

2. the resulting tree will have an upper bound on its weight;

3. the solution technique is resilient to the fact that each agent only has
local information and no shared memory; and

4. the overhead of these invariants will not outweigh the potential speedup
from concurrency.

This chapter introduces the algorithm and prove these properties. After the
introduction and definition of some requisite formalism, property 1 is proven
below in Corollary 1 of §3.1.3. Property 2 is proven in Proposition 3, prop-
erty 3 will be apparent from the definition of the method itself (Algorithm 2),
and property 4 is proven by showing that the algorithm requires at most
linear—and sometimes only logarithmic—messaging rounds in Proposition 5
of §3.2.

3.1 Multidirectional Graph Search
for Constrained Forests

The basic mechanism of the algorithm is quite simple: Each terminal con-
currently performs a best-first search using a special potential function to
prioritize the fringe nodes. During each round the node of minimum poten-
tial is expanded from each search’s fringe, thus adding an edge to the final
forest. When two of the concurrent searches expand the same node, then they
merge their remaining fringes and continue as a single search. When all of
the searches have merged together, it implies that the forest spans all of the
terminals—meaning that the forest is a feasible solution—so the algorithm
terminates. An overview of the entire process is given in Algorithm 2.

The remainder of this section provides the notation and descriptions re-
quired to formally define and model the algorithm. This is used at the end of
the section to prove correctness and completeness, and will be expanded later
in the chapter to provide formal bounds on the runtime and performance of
the algorithm.



Chapter 3.1: Multidirectional Graph Search 27

Algorithm 2 The multidirectional graph search algorithm.

1: procedure Multidirectional-Graph-Search(T, v, w, δ)
Require: T is the set of terminals. v ∈ T is the terminal running this instance

of the search algorithm. w is a function that maps edges to their associated
weight in the metric space

[
ω̃, 3

2
ω̃
]
∈ Q. δ is a successor function such that

δ(S) is the set of edges having exactly one endpoint in S.
Ensure: H = 〈Ṽ , Ẽ〉 is the resulting forest.

2: Ṽ ← {v} /* The initial solution has just our vertex. . . */
3: Ẽ ← ∅ /* . . .and no edges */
4: F ← δ({v}) /* The fringe of our search, initialized to v’s incident

edges */
5: ∀u ∈ V : g(v)← 0 /* Initialize the path-cost function, implicitly setting
yS ← 0 for all S ⊂ V */

6: while (Ṽ ∩T 6= T )∧ (F 6= ∅) do /* while H does not contain all terminals
and the fringe is not empty */

7: Find an edge in e = 〈v, u〉 ∈ F such that ε = w(e) − g(u) − g(v) is
minimized.

8: if u either is being or already was expanded by another search then
9: Union Ṽ , Ẽ, F , and g with the respective data structures of the

search that already expanded u and then merge our execution with that search.
10: if The other search also expanded the edge 〈v, u〉 this round then
11: ε← ε

2

12: end if
13: end if
14: for all k ∈ Ṽ : k is incident to an edge in the fringe do
15: g(k)← g(k) + ε /* Implicitly set yṼ ← yṼ + ε */
16: end for
17: F ← (F \ {e}) ∪ δ({u}) /* Remove e and add the edges incident to u

*/

18: Ṽ ← Ṽ ∪ {u}
19: Ẽ ← Ẽ ∪ {e}
20: end while
21: end procedure



28 Chapter 3.1: Multidirectional Graph Search

3.1.1 A Primal-Dual Formulation

In order to prove the various properties of the algorithm, it is useful to cast
the search problem as an equivalent optimization problem. In fact, the un-
derlying mechanism of the algorithm is that it casts the optimization problem
as an integer program whose integrality constraints are relaxed to produce a
continuous optimization problem (a.k.a. the primal). The dual formulation
of the primal is then used to guide the solution of the primal. The solution
is then converted back to a feasible solution of the integer program. This
is a well known general method for sequentially approximating hard inte-
ger programming problems, which is often called the primal-dual strategy or
schema [61].

Recall that the complementary slackness property (q.v. §2.2) ensures
that a primal variable can have a positive value only if its associated dual
constraint is tight. This property allows us to use the dual to guide the
solution of the primal. In a more tangible sense, it is what informs us as to
the potential function that should be used to prioritize the fringe nodes in
the best-first search.

Let f : 2V → {0, 1} be an auxiliary function such that f(S) = 1 if and
only if the set S contains some terminals but not all terminals:

f(S) 7→

{
1 if ∅ 6= S ∩ T 6= T,

0 otherwise.

Note that f is proper (q.v. §2.3). Recall from §2.1 that the optimization
problem of finding a minimum weight tree that spans the terminals can then
be captured as the following integer program [60]:

minimize
∑
e∈E

w(e)xe

subject to:

x(δ(S)) ≥ f(S), ∀S ⊂ V : S 6= ∅
xe ∈ {0, 1}, ∀e ∈ E,

(IP)

where each variable xe is an indicator as to whether the edge e is a member
of the final tree, V is the set of the graph’s nodes, δ(S) is the set of edges
having exactly one endpoint in S, and x(F ) 7→

∑
e∈F xe, ∀F ⊆ E. Therefore,

any forest H = 〈Ṽ , Ẽ〉 ⊆ G will be a feasible solution to the problem if(
f(Ṽ ) = 0

)
=⇒

(
Ṽ ∩ T = T

)
.

Let (LP) denote the linear programming relaxation of (IP) obtained by



Chapter 3.1: Multidirectional Graph Search 29

replacing the integrality restriction with xe ≥ 0. The dual of (LP) is

maximize
∑
S⊂V

f(S)yS

subject to: ∑
S:e∈δ(S)

yS ≤ w(e), ∀e ∈ E

yS ≥ 0, ∀S ⊂ V : S 6= ∅.

(D)

An edge is tight if w(e) =
∑
S:e∈δ(S) yS . Let Z∗LP be the cost of the optimal

solution to (LP) and let Z∗IP be the cost of the optimal solution to (IP). It is
easy to see that Z∗LP ≤ Z∗IP.

The way the algorithm’s multidirectional search corresponds to solving the
primal-dual optimization problem is as follows. Since the algorithm starts off
with an empty tree, the initial solution, H, is dual feasible but not necessarily
primal feasible. By choosing an edge from the fringe that minimizes the
potential function (cf. line 7 of Algorithm 2), we are essentially choosing a
dual constraint to become tight. By the complementary slackness property,
this means that an associated primal variable (i.e., the edge) can become a
part of the final tree (line 19). The path-cost update (line 15) is essentially
closing the duality gap, which implicitly pushes up the values of the dual
variables yS for all S ⊆ V that are currently involved in a search. The
potential function is what ensures that H remains dual feasible (this is proven
below in Proposition 2). Finally, the while loop (line 6) ensures that H is
primal feasible.

3.1.2 The Distributed Model

This section serves to define a model of distributed computation that captures
the primal-dual optimization scheme on which the algorithm is based. This
distributed model is then used in the following section to provide theoretical
bounds on the optimality of the algorithm.

We assume that the communications network provides guaranteed deliv-
ery and ordering of messages, however, there may be arbitrary latency (i.e.,
the network is asynchronous [46]). We further assume that all agents are
honest and correct and there are no malicious interlocutors, and thus need
not consider the problem of Byzantine failure. There is one agent per termi-
nal. The agents are non-adversarial insofar as their primary goal is to find a
feasible solution to the search problem. The collective is therefore a coopera-
tive multiagent system [17]. Agents’ perceptions of the graph are consistent,
possibly through the use of a distributed consensus algorithm, however, each
agent only requires local knowledge of its neighbors in the graph. Each ver-
tex has a unique identifier with a globally agreed ordering. This ordering can



30 Chapter 3.1: Multidirectional Graph Search

be used to construct a total ordering over the edges (e.g., by combining the
unique identifiers of the incident vertices).

The algorithm is round-based, with each round corresponding to a single
iteration of the while loop on line 6 of Algorithm 2. The rounds proceed asyn-
chronously between each of the searches. Therefore, as the searches merge
throughout the execution of the algorithm, the rounds naturally become syn-
chronized.

Let Ht = 〈Ṽt, Ẽt〉 be the partially constructed tree at the beginning of
round t (i.e., the tth iteration of the while loop on line 6 of Algorithm 2).
Let Ct be the set of connected components in Ht. For sake of brevity and
simplicity, let µt : V → Ct be a function mapping vertices to their associated
connected component during round t; therefore, µt(v) 7→ Ci =⇒ v ∈
Ci(∈ Ct). A connected component Ci ⊆ V such that f(Ci) = 1 (i.e., Ci
contains at least one terminal but not all of the terminals) is still actively
performing its search; such components are therefore called active. The fringe
of a connected component’s search is therefore the set of edges in the cut-set
of the component. Let gt : V → Q be a mapping of vertices to a rational
number during round t. In the context of search, these values represent an
estimate on the path-cost of each vertex, however, they also represent an
upper bound on the duality gap in the associated optimization problem.

Let Jt : V × V → {0, 1} be a binary relation defining which edges will be
added to the tree during round t. Each active component will choose to add
the edge in its fringe that has minimal duality gap. Therefore, Jt(u, v) = 1 if
and only if f(µt(u)) = 1 and

〈u, v〉 = arg min
〈i,j〉∈δ(µt(u))

w(〈i, j〉)− gt(i)− gt(j). (3.1)

Ties in the minimization are broken based upon the ordering of the edges.
Let J+ denote the transitive closure of J .

Note that J does not necessarily commute: (∃t : Jt(u, v)) 6=⇒ (∃s :
Js(v, u)). In the case when Jt(u, v) = Jt(v, u), the union between µt(u) and
µt(v) is said to be mutual . Also note that as long as there exists a feasible
solution to (IP) then the minimization ensures that each search must have
exactly one edge in the fringe that becomes tight each round:

∀C ∈ Ct : f(C) =
∑

〈u,v〉∈δ(C)

Jt(u, v).

Ht is the partially constructed tree during round t, initialized to H0 =
〈V, ∅〉. The partial tree is updated each round with the set of all edges that
became tight during the round:

Ht+1 = Ht ∪ {〈u, v〉 ∈ E : Jt(u, v) ∨ Jt(v, u)}.



Chapter 3.1: Multidirectional Graph Search 31

For a set S ⊆ V , let yS be the dual variable associated with S. Initially
all such variables are set to zero. Note that in actuality these variables need
not be made part of an implementation of the algorithm; they exist solely for
the purpose of proving properties of the algorithm. These dual variables are
implicitly updated as follows:

yS ←

{
w(〈i,j〉)−gt(i)−gt(j)

1+Jt(j,i)
if ∃i ∈ S ∈ Ct, j /∈ S : Jt(i, j),

0 otherwise.
(3.2)

The g values are initialized such that ∀v ∈ V : g0(v) = 0. They are
updated each round such that

gt+1(v) = gt(v) + yµt(v). (3.3)

The value gt(v) can therefore be interpreted as the amount of slack remaining
in the dual variables during round t before an edge incident to vertex v
becomes tight.

Let τ be the number of rounds required for the algorithm to reach qui-
escence. Therefore, τ is the earliest round during which there are no active
components: τ = mint∈N0 (∀C ∈ Ct : f(C) = 0).

3.1.3 Correctness Proofs

Lemma 1. Any cycle in the intersection graph1 of Ht+1 formed from Ct must
consist solely of edges along the cuts between active components.

Proof. Assume, on the contrary, that there exists a cycle containing an edge
that is incident to at least one inactive component. Let 〈u, v〉 be such an edge
and assume µt(v) is inactive; then (3.1) implies that v’s connected component
has no outgoing edges,

∀i ∈ µt(v) : (¬∃j ∈ V : Jt(i, j)),

which contradicts the fact that 〈u, v〉 is in a cycle.

The potential cost of an edge is the fractional quantity associated with ε
on line 7 of Algorithm 2.

Lemma 2. Any cycle in the intersection graph of Ht+1 formed from Ct must
consist of edges of equal potential cost.

1An intersection graph is formed from a family of sets C = {C1, C2, C3, . . .} by creating
one super-vertex vi for each set Ci and connecting it to any other vertex vj by an edge
whenever vi and vj ’s corresponding sets have a nonempty intersection. This produces the
edge set {〈vi, vj〉 : µ(vi) ∩ µ(vj) 6= ∅}.



32 Chapter 3.1: Multidirectional Graph Search

Proof. Let e1 = 〈u1, v1〉 be an edge in a cycle; then (3.1) implies that all edges
in a cycle must be cuts between existing connected components. Therefore,
µt(u1) 6= µt(v1). Furthermore, there must be another edge in the cycle,
e2 = 〈u2, v2〉, such that µt(v2) = µt(u1). It must also be true that Jt(u1, v1) =
Jt(u2, v2) = J+

t (u1, v2) = 1. By Lemma 1 all components in the cycle are
active. Therefore, applying (3.1) gives

w(e1)− gt(u1)− gt(v1) ≤ w(e2)− gt(u2)− gt(v2).

In general, this inequality will hold for the incoming and outgoing edges of
any connected component in the cycle. Therefore, by transitivity,

w(e1)− gt(u1)− gt(v1) ≤ w(e2)− gt(u2)− gt(v2)

≤ w(e1)− gt(u1)− gt(v1),

implying that

w(e1)− gt(u1)− gt(v1) = w(e2)− gt(u2)− gt(v2).

Proposition 1. The intersection graph (q.v. footnote 1 on page 31) of Ht+1

formed from Ct is acyclic.

Proof. Assume, on the contrary, that there is a round t during which a cycle
of length ` is formed. Since the graph is simple, ` > 1. By Lemma 2, all of the
edges in the cycle must be of equal potential cost. Therefore, each connected
component will have had a tie between two fringe edges which must have
been broken using the edge ordering. Therefore, either ` = 1 or there are two
edges with the same unique identifier, both of which are contradictions.

Claim 1. If all edge weights are coprime, then Proposition 1 will hold even
if the unique identifier ordering assumption does not.

Corollary 1. H0, . . . ,Hτ are all acyclic.

Proof. Since H0 = 〈V, ∅〉, the base case is acyclic. Induction over Proposi-
tion 1 then proves the corollary.

Lemma 3. Let t′ be the round during which an edge e = 〈u, v〉 is added to
the spanning forest. Then e will not be in the cut of any component in a
subsequent round: ∀t > t′, C ∈ Ct : e /∈ δ(C).

Proof. µt′+1(u) = µt′+1(v) = µt′(u) ∪ µt′(v). Therefore, in all rounds subse-
quent to t′ both endpoints of e are in the same component and thus cannot
be in the fringe.



Chapter 3.1: Multidirectional Graph Search 33

Proposition 2. The vector y is a feasible solution to (D) and has the property∑
e∈Hτ

w(e) ≤
∑
e∈Hτ

∑
S:e∈δ(S)

yS .

Proof. The fact that y is a feasible solution to (D) is a straightforward result
of the fact that y is initially zero and is updated according to (3.2). Let t be
the round during which an edge e = 〈u, v〉 ∈ Hτ was added to the forest. It
follows from the definition of (3.3) that(

gt(u) =

t−1∑
i=0

yµi(u)

)∧(
gt(v) =

t−1∑
i=0

yµi(v)

)
.

Furthermore, at the beginning of round t the potential for e is ε = w(e) −
gt(u)− gt(v). Once e is added to Ht, the dual variables yµt(u) and yµt(v) are
updated according to (3.2). Then there are three possible cases:

1. f(µt(u)) = f(µt(v)) = Jt(u, v) = Jt(v, u) = 1;

2. f(µt(u)) = f(µt(v)) = Jt(u, v) + Jt(v, u) = 1; or

3. f(µt(u)) + f(µt(v)) = 1.

In case 1 (handled on line 11 of Algorithm 2),

yµt(u) + yµt(v) =
ε

1 + Jt(v, u)
+

ε

1 + Jt(u, v)
= ε

=⇒ w(e) =

t∑
i=0

(
yµi(u) + yµi(v)

)
. (3.4)

For case 2, assume without loss of generality that Jt(u, v) = 1 and Jt(v, u) =
0. For case 3, assume without loss of generality that f(µt(u)) = 1 and
f(µt(v)) = 0. Then for both of these cases note that yµt(u) = ε

1+Jt(v,u) = ε,

implying

w(e) = yµt(u) +

t−1∑
i=0

(
yµi(u) + yµi(v)

)
. (3.5)

Lemma 7 implies that the summations in (3.4) and (3.5) comprise all sets
that cut e, thus completing the proof.

Lemma 4 (Theorem 3.6 of [14]). For any t ≤ τ , let I be the intersection
graph of the final spanning forest Hτ formed from Ct. Remove all isolated
vertices in I that correspond to components in Ct that are inactive. Then no
leaf in I corresponds to an inactive component.



34 Chapter 3.1: Multidirectional Graph Search

Proof sketch. The contrary leads to the necessity that at least one edge inci-
dent to an inactive component cannot be a part of Hτ , which is a contradic-
tion.

Proposition 3. If there exists an ω̃ such that all edge weights are in the range[
ω̃, 3

2 ω̃
]

then the cost of the final tree Hτ is bounded above by

(
2− 2

|V |

)
Z∗IP.

Proof. Without loss of generality, assume yS > 0 =⇒ f(S) = 1. This
property ensures that

∑
S⊂V yS ≤ Z∗LP. Since it is clear that Z∗LP ≤ Z∗IP, we

then have
∑
S⊂V yS ≤ Z∗LP ≤ Z∗IP. Proposition 2 ensures that the weight of

Hτ is ∑
e∈Hτ

w(e) ≤
∑
e∈Hτ

∑
S:e∈δ(S)

yS =
∑
S⊂V

yS |Hτ ∩ δ(S)|.

To prove this theorem we will show by induction over the construction of Hτ

that ∑
S⊂V

yS |Hτ ∩ δ(S)| ≤
(

2− 2

|R|

) ∑
S⊂V

yS . (3.6)

The base case certainly holds at round zero since all yS are initialized to zero.
Let A be the set of edges added to the spanning forest during an arbitrary
round t. For each edge e = 〈u, v〉 ∈ A, let εe denote the potential value
associated with that edge: εe = w(e) − gt(u) − gt(v). Now sort A according
to descending potential value, such that ei ∈ A is the edge with the ith largest
potential. At the end of a round t, the left-hand side of (3.6) will increase by
at most∑
C∈Ct:f(C)=1

yC |Hτ ∩ δ(C)| =
∑

C∈Ct:f(C)=1

∑
〈u,v〉∈A:u∈C

Jt(u, v)εe
1 + Jt(v, u)

|Hτ ∩ δ(C)|.

(3.7)
If we can prove that this increase is bounded above by the increase of the
right-hand side, namely (

2− 2

|V |

) |A|∑
i=1

i× εei , (3.8)

then we will be done.
First, observe that (3.7) can be bounded above by(

max
e∈A

εe

) ∑
C∈Ct:f(C)=1

∑
〈u,v〉∈A:u∈C

Jt(u, v)|Hτ ∩ δ(C)|. (3.9)

Next, observe that (3.8) can be bounded below by(
min
e∈A

εe

)(
2− 2

|V |

)
|A|
(
|A|
2

+
1

2

)
. (3.10)



Chapter 3.1: Multidirectional Graph Search 35

Now let I be the intersection graph of the final spanning forest Hτ formed
from Ct. Remove all isolated vertices in I that correspond to inactive compo-
nents in Ct. Notice that I is a forest, and by Lemma 4 no leaf in I corresponds
to an inactive component. Let Na be the set of vertices in I that correspond
to active components: Na = {C ∈ Ct : f(c) = 1}, and let Ni be the set of ver-
tices in I corresponding to inactive components. The degree of a vertex v in
I corresponding to component C, denoted dv, must be |{e ∈ δ(C) : e ∈ Hτ}|.
Then the summation of (3.9) can be rewritten as

∑
v∈Na

dv =
∑

v∈Na∪Ni

dv −
∑
v∈Ni

dv ≤ (2|Na| − 2) .

This inequality holds since I is a forest with at most |Na| + |Ni| − 1 edges,
and since each vertex corresponding to a guarded component has degree at
least 2. Substituting this result back into (3.9) we have

(3.7) ≤ (3.9) ≤
(

max
e∈A

εe

)(
2− 2

|V |

)
|A|,

since the number of active components is always no more than |V |. Therefore,
(3.7) ≤ (3.10) ≤ (3.8) if during every round the following invariant holds:

max
e∈A

εe ≤
(
|A|
2

+
1

2

)
min
e∈A

εe,

which is clearly true because all of the edge weights are in
[
ω̃, 3

2 ω̃
]
. Hence

the theorem is proven.

By using induction over the growth of a connected component, it is pos-
sible to identify an alternative set of conditions under which the algorithm is
guaranteed to produce 2-optimal solutions that do not rely on assumptions
about the distribution of edge weights. Roughly speaking, if we can bound
the number of edges that will later be added to an active component then
we can also prove 2-optimality. In order to prove this, let d : N0 × 2V → N0

be an auxiliary function such that d(t, S ⊆ V ) returns the number of edges
incident to the vertices in S that will become tight in rounds later than t:

d(t, S) 7→

∣∣∣∣∣
{
〈x, y〉 ∈

⋃
v∈S

δt(v) :

(
∃t′ : t < t′ ≤ τ ∧

(
Js(x, y) ∨ Js(y, x)

))}∣∣∣∣∣ .



36 Chapter 3.1: Multidirectional Graph Search

Proposition 4. Algorithm 2 is 2-optimal if ∀e = 〈u, v〉 ∈ Ẽ :∃t : Jt(u, v) = 1 ∧ Jt(v, u) = 0︸ ︷︷ ︸
e was not added mutually

∧ d(t, {u}) ≤ 1︸ ︷︷ ︸


(at most one additional edge incident to u becomes tight in a later round)

∨∃t : Jt(u, v) = Jt(v, u)︸ ︷︷ ︸
e was added mutually

∧ d(t, {u, v}) ≤ 3︸ ︷︷ ︸
 .

(at most three additional edges incident to u and v become tight in a later round)

Proof. We still need to ultimately prove the following invariant:∑
e∈Hτ

w(e) ≤ 2
∑
S⊂V

yS .

Now let us consider the addition of a single edge e = 〈u, v〉 of potential
ε = w(e)−gt(u)−gt(v) during an arbitrary round t. Without loss of generality
assume that Jt(u, v) = 1, but Jt(v, u) is arbitrary. The increase of the right-
hand side of the invariant is always ε. Now, for sake of analysis, assume
that the constrained forest Ht : t ∈ {0, 1, . . . , τ} is actually represented as a
directed graph, where each edge 〈i, j〉 ∈ Ht implies that i’s component chose
to add the edge to j during round t:

〈i, j〉 ∈ Ht =⇒ Jt(i, j).

Therefore, if an edge choice is mutual then 〈i, j〉 and 〈j, i〉 will both be in
Ht. Now let I be the intersection graph of Hτ formed from Ct. For every
component C ∈ Ct, let iC denote the vertex in I corresponding to C. Then
the increase of the left-hand side of the invariant can be exactly represented
as {

ε× deg+(iµt(u)), if Jt(u, v) 6= Jt(v, u)
ε
2 ×

(
deg+(iµt(u)) + deg+(iµt(v))

)
, otherwise.

This result can be interpreted as follows: In order to maintain the invariant
(and thereby prove 2-optimality). . .

1. . . .if the addition of e is not mutual then there can be at most one other
edge in δt(u) that becomes tight in a later round; or

2. . . .if the addition of e is mutual then there can be at most three other
edges in δt(u) ∪ δt(v) that become tight in a later round.

These requirements are satisfied by the conditions of the proposition.



Chapter 3.2: Efficiency of the Algorithm 37

3.2 Efficiency of the Algorithm

Now that we have established the correctness and approximation bounds of
the algorithm, this section analyzes its efficiency with respect to the number
of communication rounds required for it to reach quiescence.

For sake of analysis, let us first assume that each line in Algorithm 2
(qq.v. page 27) can be executed in a constant number of communication
rounds; this assumption will be relaxed later in §3.2.2. Note that line 6 of
Algorithm 2 contains the only loop of the algorithm whose body requires
message passing. Therefore, the total number of communication rounds will
be asymptotically equal to the number of iterations of the while loop, which
we shall call primary communication rounds. Communication rounds that
are required for executing the lines of the algorithm within the loop (e.g.,
intermediate rounds required for a connected component to choose which
fringe edge it will make tight) are called secondary communication rounds.

3.2.1 Primary Communication Rounds

It is easy to see that the number of primary rounds required for the algorithm
to reach quiescence, τ , is equal to the diameter of the search space, which is
in turn O(n), since every acyclic subgraph has O(n) edges and the algorithm
adds at least one edge per round. This upper bound can in fact be tightened
for many common cases, which we shall now demonstrate. Let Af (t) = A(t)
be an upper bound on the number of active components at the beginning of
round t. Similarly, let Lf (t) = L(t) be an upper bound on the total number
of components at the beginning of round t. Clearly,

A(t) ≥ |{C ∈ Ct : f(C) = 1}|, and

L(t) ≥ |Ct| ≥ A(t).

In general, every active component will union with another component during
each round. Regardless of whether such a component chooses to union with
an active or inactive component, the total number of components will decrease
by one half the number of active components. Therefore L(t) = L(t − 1) −
A(t − 1)/2. Now let us consider the extrema for the change in the number
of active components. If all active components choose to union with other
active components and all unions are mutual (q.v. the definition of mutuality
on page 30), then we have A(t) = A(t − 1)/2. On the other hand, if as
many active components union with inactive components as possible, then

A(t) ≤ min
(
A(t − 1), L(t − 1) − A(t − 1)

)
. Therefore, assuming mutual



38 Chapter 3.2: Efficiency of the Algorithm

unions, the general recurrences for A(t) and L(t) are:

A(t) = max

(
A(t− 1)

2
,min

(
A(t− 1), L(t− 1)−A(t− 1)

))
,(3.11)

L(t) = L(t− 1)− A(t− 1)

2
.

Let n be the total number of vertices, n = |V |, and let α ≤ n be the number
of terminals:

α = |{v ∈ V : f({v}) = 1}|. (3.12)

The initial conditions for the recurrences are clearly

A(0) = |{C ∈ C0 : f(C) = 1}| = (3.12) = α,

L(0) = |C0| = n.

Claim 2. A(t− 1)/2 will always dominate the maximization in (3.11).

Validation of this claim will be given in the proof of the following proposition.

Proposition 5. The algorithm will terminate after τ = O(log n) iterations
of the main loop (line 6 of Algorithm 2) if α ≥ n

2 and all component unions
are mutual.

Proof. This follows from the fact that the algorithm will terminate once all
components are inactive:

∀t ∈ N0 : A(t) = 0 =⇒ t ≥ τ.

Therefore, the burden of this proof is to show that the A(t) recurrence will
converge exponentially, implying that τ = O(log n).

If Claim 2 holds, then it is clear that the A(t) recurrence will converge
exponentially:

A(t) =
A(0)

2t
,

L(t) = n−
t∑
i=0

A(0)

2i
.

Let k = A(0)
n and observe that the conditions of this proposition ensure k ≥ 1

2 .
Substituting k×n for A(0) ensures that the minimization in A(t) will always



Chapter 3.2: Efficiency of the Algorithm 39

evaluate to L(t− 1)−A(t− 1) because

∀t ∈ N0 : A(t) ≥ L(t)−A(t)

⇐⇒ n
k

2t
≥ n

(
1−

(
t∑
i=0

k

2i

)
− k

2t

)

⇐⇒ 2k

2t
≥ 1−

t∑
i=0

k

2i

⇐⇒ k ≥ 2t

1 + 2t+1
,

which is true because 2t/(1 + 2t+1) is bounded above by 1
2 . Therefore, pro-

vided Claim 2 holds, (3.11) can be simplified to

A(t) = max

(
A(t− 1)

2
, L(t− 1)−A(t− 1)

)
.

Claim 2 obviously holds for the base case of t = 1 because A(0)/2 = k × n is
bounded below by L(0)−A(0) = n− n

2 . Therefore, Claim 2 will hold as long
as

A(t)

2
≥ L(t)−A(t).

This equates to

k ≥ 2t+1

(
1−

(
t∑
i=0

k

2i

)
− k

2t

)

≥ 2× 4t

2t + 4t+1
,

which must be true because (2× 4t)/(2t + 4t+1) is bounded above by 1
2 .

3.2.2 Secondary Communication Rounds

In some communications networks—such as a wired local area network (LAN)—
the assumption that there is a constant number of secondary communication
rounds for each primary round is valid. In fact, it will be valid for any network
in which the cost of sending a message between any pair of agents is constant.
Routing may be necessary in some networks like MANETs, in which case the
cost of sending a message between agents is a function of the number of rout-
ing hops that separate them. Analyzing the total number of rounds in such
cases is the subject of this section.

If network routing is necessary, the number of messaging rounds required
to send a message between any pair of agents in the same connected compo-
nent is equal to the diameter of the component. Therefore, the number of



40 Chapter 3.2: Efficiency of the Algorithm

rounds required to choose a fringe edge (line 7 of Algorithm 2) would be on
the order of the diameter of the active connected component. During primary
round t, the diameter of every connected component is O(t). Therefore, the
number of secondary rounds between primary round t and primary round
t+ 1 will be O(t).

The worst case therefore occurs when the problem instance contains only
two terminals, in which case the algorithm will require O(n) primary rounds.
The total number of rounds (vi&., the sum of both primary and secondary
rounds) will therefore be bounded above by

n∑
i=1

i = O(n2). (3.13)

Despite the fact that this is O(n2), the summation converges to that upper
bound very slowly. To measure the rate of the convergence we shall use a
variation of d’Alembert’s ratio test. Given a sequence {xk} that converges to
a constant L,

lim
k→∞

xk = L,

we take the following limit

lim
k→∞

|xk+1 − L|
|xk − L|

= r,

and say that r is the rate of convergence. If r = 0 then the sequence converges
to L superlinearly. If 0 < r < 1 then the sequence converges linearly. If r = 1
then the sequence converges sublinearly. Applying this test to the ratio of
the the sum in (3.13) and its asymptotic bound of n2, we see that L = 1

2 :

lim
n→∞

1
2 (n2 − n)

n2
=

1

2
.

Taking the limit of the ratio,

lim
k→∞

∣∣∣ (k+1)2−k−1
2(k+1)2 − 1

2

∣∣∣∣∣k2−k
2k2 − 1

2

∣∣ = lim
k→∞

∣∣∣∣ k

k + 1

∣∣∣∣ = 1,

it is clear that the sum in (3.13) converges to its bound of O(n2) sublinearly
with respect to n.

In the best case, the number of terminals in the problem instance is greater
than or equal to

⌊
n
2

⌋
and the majority of edge additions are mutual. From

Proposition 5 we know that this will result inO(log n) primary rounds. There-
fore, the total number of rounds (primary plus secondary) will be

logn∑
i=1

i =
log(n) (log(n) + 1)

2
= O(log2(n)),



Chapter 3.2: Efficiency of the Algorithm 41

which is polylogarithmic. Applying the same rate of convergence test as
above:

lim
n→∞

1
2

(
log(n)

(
log(n) + 1

))
n2

= L =
1

2
,

and lim
k→∞

∣∣∣∣ log2(k + 1) + log(k + 1)− 1

log2(k) + log(k)− 1

∣∣∣∣ = r = 1.

In the best case in terms of the number of terminals, we can likewise con-
clude that the convergence of the number of rounds to its upper bound of
O
(
log2(n)

)
is also sublinear.

3.2.3 Time-Approximation Tradeoff

Elkin recently discovered unconditional lower bounds on the time-approximation
tradeoff in distributedly solving the minimum spanning tree (MST) prob-
lem [80]. Recall from Table 2.1 that the MST problem is a constrained forest
problem. In fact, the problem is a matroid and thus our approach is al-
ways guaranteed to find the optimal solution. Since the MST problem is in
a sense a best case scenario for our approach, Elkin’s lower bounds provide
a benchmark on how close our approach achieves the bound. Elkin’s results
are transcribed in Table 3.1.

As we can see from Elkin’s results, in the general case when the diameter
of the graph, Λ, is equal to n, the time-approximation tradeoff is τ2 × ε =

Ω
( n
B

)
, where B is the number of bytes sent per message. In the worst case,

our algorithm will have to transmit a message with a payload containing all
of the graph’s edges (e.g., if a fringe vertex is neighboring all other vertices).
This message will be of size O(log |E|) bytes. Given that our algorithm’s
approximation bound, ε, equals 2, we have:

2τ2 = Ω

(
n

log |E|

)
⇓

τ = Ω

(√
n

log
(
n
2

))
= Ω (log n) .

Therefore, our runtime bound of τ = O(log n) (q.v. Proposition 5) actually
achieves the lower bound.

Extending our notion of subdividing rounds espoused in the previous sec-
tions, let us consider further subdividing rounds such that only a fractional



42 Chapter 3.2: Efficiency of the Algorithm

Λ
Lower Bound on

the
Exact Computation

Lower Bound on
the

Time-Approximation
Tradeoff

nd : 0 < d < 1
2 Ω

(√
n

B

)
τ2 × ε = Ω

( n
B

)

Θ(log n) Ω

(√
n

B log n

)
τ2 × ε = Ω

(
n

B log n

)

Constant (at least 3) Ω

(( n
B

) 1
2−

1
2Λ−2

)
τ2+ 2

Λ−2 × ε =

Ω

(
n

B × Λ

)

Table 3.1: A summary of lower bounds on the MST problem restricted to
n-vertex graphs of diameter at most Λ, where B is the number of bytes sent
per message and ε is the constant of approximation. This table is excerpted
from [80, cf. Table 1] and is attributable to Elkin.



Chapter 3.2: Efficiency of the Algorithm 43

amount of dual variable slack is pushed up during each sub-round. Borrow-
ing Elkin’s notation (at the expense of overloading our own), let ωmax be the
ratio between the maximal and the minimal weight of an edge in the input
graph [80, cf. page 332]. Divide each primary round into

⌈
2
3ωmax

⌉
sub-rounds.

During each sub-round increase the non-tight dual variables by a value of 3
2 .

Therefore, during sub-round i ∈
{

1, 2, . . . ,
⌈

2
3ωmax

⌉}
, only edges of weight in

the range (
ω̃ +

3

2
(i− 1), ω̃ +

3

2
i

]
(3.14)

will become tight. Since ∀i ∈ N : |(3.14)| ≤ 3
2 , the original 2-optimality

invariant from Proposition 3 holds, even if ωmax is greater than 3
2 .

As long as there exists some constant c such that ωmax ≤ 3
2 logc(n), then

the round splitting will only increase the total number of rounds by a factor
of O(logc(n)), which retains polylogarithmic runtime. This in effect gives a
tradeoff on runtime: If we have a finite a priori upper bound on ωmax, then
we can perform the round splitting with

⌈
2
3ωmax

⌉
sub-rounds. The better the

bound on ωmax the lower the c parameter, and thereby the fewer sub-divided
rounds that are necessary. If a constant c does exist, then the total number
of rounds will increase by a factor of

O

log

(
log( 2

3
ωmax)

log logn

)
(n)

 .

3.2.4 Local Efficiency

The only data structures employed in Algorithm 2 are those of Ṽ , Ẽ, and F .
Ṽ can contain at most all of the vertices, so |Ṽ | = o(n). Ẽ and F can contain
at most all of the edges, so |Ẽ| = o(|E|) and |F | = o(|E|). Therefore, the
maximum memory usage at any node executing the algorithm is

O(|E|) = O

(
n2 − n

2

)
.

In terms of local computation, we showed in §3.2.1 that the number of
iterations of the while loop of the algorithm is asymptotically sublinear with
respect to the number of vertices. It is also clear that the operations in
lines 2–5 can be implemented in sublinear time. The most expensive local
operations in the body of the while loop are lines 7, 9, 14, and 17.

Line 7 In our analysis of memory complexity, we established that

|F | = O

(
n2 − n

2

)
,



44 Chapter 3.3: Conclusions

which will thereby also be the complexity of finding the minimum ele-
ment in F .

Line 9 The most expensive operation on this line is performing the symmet-
ric difference of the searches’ fringes for their merger. The symmetric
difference of two sets can be performed in asymptotic linear time with
respect to the size of the larger set. Since |F | = O(|E|), this operation

can likewise be performed in O
(
n2−n

2

)
time.

Line 14 |Ṽ | ≤ |V |, so this operation will run in O(n) time.

Line 17 u can be incident to at most |V | − 1 edges, so this operation will
run in O(n) time.

Therefore, the most expensive operation inside of the main while loop runs

in O
(
n2−n

2

)
time. Since the while loop will iterate at most n times, the

worst-case local computation of the algorithm is bounded above by

O (n×m) = O

(
n3 − n2

2

)
,

where m is the number of edges in the search space. This bound is clearly
polynomial.

3.3 Conclusions

This chapter has introduced a new distributed multidirectional graph search
algorithm for constrained forest problems based on the primal-dual schema.
We have shown that each node in the search space only needs to know the
status of the fringe of its search in order to make a decision, the locality of
which inherently allows for the distribution of the algorithm. In Corollary 1
we showed that the distribution will not induce a cycle in the final solutions,
the result of which is strengthened by Proposition 2’s assurance that the
solutions of the algorithm are feasible. Proposition 3 proves that a constant
approximation bound is achievable and, furthermore, that we can sustain
that bound for graphs with well behaved edge weights. Finally, in §3.2.3 we
showed that our runtime bounds meet the theoretical lower bound, and gave
an algorithmic extension for 2-approximating constrained forest problems of
arbitrary edge distribution if a finite upper bound on ωmax is known.

There are, however, a few more issues to address with respect to dis-
tributed multidirectional graph search. First, there is the question of how
the algorithm performs on graphs in which the edge weights do not map to
the metric space required for the theoretical approximation guarantees to
hold and there is no a priori finite upper bound on ωmax that would allow



Chapter 3.3: Conclusions 45

for round splitting. In Chapter 4 it will be shown that—even without the
required embedding of edge weights and in the absence of the round splitting
technique—the expected value of the approximation bound will be constant
for a large family of edge weight distributions. Secondly, no examples have
yet been given as to how this framework can be instantiated (e.g., furnished
with distributed protocols) for specific problems and their associated proper
functions. Finally, it is unclear how this approach might fare empirically in
real-world domains. These last two topics are subjects of Chapter 5.





Chapter 4

Bad Things Rarely
Happen to Good Graphs

The previous chapter proved that multidirectional graph search can be used
to distributedly discover constrained forests. Furthermore, if the edge weights
are known to be distributed in a proper metric space then the solutions are
guaranteed to be 2-optimal. But what if the distribution of edge weights
is unknown and/or does not satisfy the requirements for the theoretical 2-
optimality bound to hold? This chapter answers the previous question by
investigating the expected value of the worst case behavior of constrained
forest algorithms. In order to do this, we shall first need to introduce the
problem using statistical notation. On how this statistical problem relates to
the previous approximation algorithms problem will then be expounded.

Let X = [X1, X2, . . . , Xn]T be a vector random variable drawn from a
known non-negative1 distribution with cumulative distribution function F (x)
and probability density function f(x). Let X(n,k) be the distribution of the
kth order statistic of X (i.e., the kth smallest element of the vector). Given
m, ` ∈ {1, 2, . . . , n}, let Z be the ratio distribution defined by the sum of the
` largest order statistics divided by the m smallest order statistics:

Z =

n∑
i=n−`+1

X(n,i)

m∑
k=1

X(n,k)

.

What can be said about Z? What are its probability density function (PDF),
cumulative distribution function (CDF), and expected value?

1By “non-negative” we mean that the distribution is truncated in the range [0,∞) such
that F (0) = 0.

47



48 Chapter 4.1: Distributions of Trimmed Sums

Before proceeding in addressing these questions, let us first discuss why
this problem is relevant to approximation algorithms. Consider a combina-
torial optimization problem on a finite structure, such as a graph. We want
to find a subset of the edges of the graph that minimize some objective func-
tion subject to a set of constraints. In this context, X can be thought of
as the set of edge weights, assuming the edge weights are independent and
identically distributed random variables drawn from the distribution F (x).
Now let us assume that we have a lower bound on the number of edges in the
optimal solution. This bound is m. For example, if we are trying to find a
minimum spanning tree and we know that the graph is connected, then the
optimal solution will have a number of edges exactly equal to the number of
vertices minus one. As another example, in the Steiner network problem with
α terminals, m must be greater than or equal to

⌊
α
2

⌋
. Therefore, the cost of

the optimal solution will have a probability distribution bounded below by
the sum of the m smallest order statistics of X. This is the denominator of
Z. Now consider ` as an upper bound on the number of edges chosen by our
algorithm. If our algorithm is finding a forest, then ` is clearly bounded above
by the number of vertices minus one. How bad would it be if our algorithm
had the worst behavior: choosing a solution containing the ` heaviest edges?
The cost of this solution would be equal to the sum of the ` largest order
statistics of X, which constitutes the nominator of Z. Therefore, Z is a very
loose lower bound on the probability distribution of the bound of approxi-
mation of this worst case algorithm. The faster the CDF of Z converges to 1
then the lower the expected approximation bound of the algorithm.

In the remainder of this chapter we analyze the asymptotic behavior of
Z for a number of common probability distributions of X. Using the central
limit theorem, we generalize these results by discovering that, for large ` and
m, the expected value of Z is `

m , regardless of the distribution of X. We
conclude by examining some surprising consequences of this general result.

4.1 Distributions of Trimmed Sums

In order to define the probability distribution of Z we will need to know the
distribution of the sum of consecutive order statistics (what are also often
called “trimmed sums”). The problem is that there is no known general-
ized closed form for this distribution. We can, however, devise a recursive
definition.

Csörgő and Simons discovered a recurrence relation for the CDF and PDF
of the distribution of the sum of the m smallest order statistics of non-negative
integer-valued random variables [81]. In the following, we generalize their
approach by devising a recurrence relation for the PDF that is applicable to
any non-negative distribution (not just integer-valued ones).

We are interested in finding the probability that the sum of the m smallest



Chapter 4.1: Distributions of Trimmed Sums 49

order statistics equals a given value: P
[∑m

i=1X(n,i) = x
]
. The recurrence is

quite simple: The probability that the sum of the m smallest order statistics
equals x is equal to the integral over all possible values of the mth smallest
order statistic multiplied by the probability that the smaller m − 1 order
statistics sum to the remaining value in x. The PDF for a specific order
statistic (encompassing the base case of m = 1) is well defined for most
distributions. Therefore, the probability that the smallest m order statistics
of a sample of size n sums to x is

P

[
m∑
i=1

X(n,i) = x

]
=∫ x

0

P [X(n,m) = s1]

∫ x−s1

0

P [X(n,m−1) = s2]

∫ x−s1−s2

0

P [X(n,m−3) = s3]

· · ·
∫ x−

∑m−1
i=1 si

0

P [X(n,1) = sm] dsm · · · ds3 ds2 ds1,

which reduces to the following recurrence:

P

[
m∑
i=1

X(n,i) = x

]
=

P
[
X(n,1) = x

]
if m = 1,∫ x

0

P
[
X(n,m) = s

]
P

[
m−1∑
i=1

X(n,i) = x− s

]
ds otherwise.

(4.1)

A similar recurrence follows for the sum of the ` largest order statistics:

P

[
n∑

i=n−`+1

X(n,i) = x

]
=


P
[
X(n,n) = x

]
if ` = 1,∫ x

0

P
[
X(n,`) = s

]
P

[
n∑

i=n−`+2

X(n,i) = x− s

]
ds otherwise.

(4.2)

While there does not appear to be a general closed form for this recurrence,
it is possible to analyze for specific distributions.

First, let us consider the continuous uniform distribution on the range
[a, b] where 0 ≤ a ≤ b. Call a random variable sampled from this distribution
U(a, b). It is well known that the PDF for the kth order statistic for a sample
of size n of the continuous uniform distribution falls under a β-distribution
with parameters k and n− k + 1:

P
[
U(a, b)(n,k) = x

]
=
xk−1(1− x)n−kΓ(n+ 1)

Γ(k)Γ(n− k + 1)
. (4.3)



50 Chapter 4.1: Distributions of Trimmed Sums

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

P
[ ∑ m i=

1
U

(0
,1

) (
n
,i

)
≤
x
]

x

m = 1
m = 2
m = 3
m = 4
m = 5
m = 6
m = 7
m = 8
m = 9
m = 10

Figure 4.1: CDF for the distribution of the sum of the m smallest order
statistics of a sample of size 10 from the standard uniform distribution.

Remarkably, this PDF is dependent on neither a nor b. This implies that for
any 0 ≤ a ≤ b and 0 ≤ c ≤ d then

m∑
i=1

U(a, b)(n,i)
d
=

m∑
j=1

U(c, d)(n,j). (4.4)

Therefore, we consider the standard uniform distribution U(0, 1), the results
of which can be generalized to any other continuous uniform distribution by
virtue of (4.4). Plugging (4.3) into the recurrence of (4.1) allows us to numer-
ically evaluate the trimmed sum of order statistics. The CDF for the sum of
order statistics of U(0, 1) on a sample of size 10 is given in Figures 4.1 and 4.2.
It is clear that the CDF converges to 1 with a very high gradient, especially
for small m. This implies that, for uniform distributions, the distribution of
the first moment (i.e., expected value) of the sum of the m smallest order
statistics is relatively invariant.

By the central limit theorem, for large enough m and ` the distribution
of the sum of order statistics will fall under a normal distribution, regardless
of the underlying distribution of X. The sum of the smallest m order statis-
tics will asymptotically have the mean mE[X] and variance Var(X)m−1.



Chapter 4.1: Distributions of Trimmed Sums 51

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

P
[ ∑ n i=

n
−
`+

1
U

(0
,1

) (
n
,i

)
≤
x
]

x

` = 1
` = 2
` = 3
` = 4
` = 5
` = 6
` = 7
` = 8
` = 9
` = 10

Figure 4.2: CDF for the distribution of the sum of the ` largest order
statistics of a sample of size 10 from the standard uniform distribution.



52 Chapter 4.2: The Exponential Distribution

Likewise, the largest ` order statistics will have mean `E[X] and variance
Var(X)`−1. For the continuous uniform distribution, this asymptotically
translates to the following normal distributions:

P

[
m∑
i=1

U(a, b)(n,i) ≤ x

]
d
= N

(
m(a+ b)

2
,

(b− a)2

12m

)
(4.5)

P

[
n∑

i=n−`+1

U(a, b)(n,i) ≤ x

]
d
= N

(
`(a+ b)

2
,

(b− a)2

12`

)
. (4.6)

Therefore, the expected value of the sum of the order statistics of every
continuous uniform distribution has very low variance. This means that for
continuous uniform distributions the quotient of the expected values of the
nominator and denominator in Z should give a relatively unbiased estimation
of the true expected value of Z, which itself should have very low variance.

4.2 The Exponential Distribution

In many respects, the exponential distribution is the worst case as its memo-
ryless property ensures the Z distribution will have unbounded outliers. This
distribution is of specific import given its manifestation in many real-world
systems. We therefore want to examine how quickly the exponential distri-
bution’s trimmed sums’ CDF converges to 1.

Nagaraja recently showed that the sum of the ` largest order statistics of
a random variable X taken from the standard exponential distribution has
the following PDF [82]:

P

[
n∑

i=n−`+1

X(n,i) = x

]
=

n

(
n− 1

`− 2

) `−1∑
i=1

(
`− 2

i− 1

)
(−1)`−i−1 exp

(
−n− i+ 1

n− `+ 1
x

)
× 1

(n− `+ 1)!

∫ x

0

exp

(
`− i

n− `+ 1
j

)
jn−`dj,

the expected value of which is

E

[
n∑

i=n−`+1

X(n,i)

]
=

n∑
i=n−`+1

i∑
j=1

1

n− j + 1
.

We can see from Figure 4.3 that this distribution also converges at a very
high gradient.



Chapter 4.2: The Exponential Distribution 53

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

P
[ ∑ n i=

n
−
`+

1
X

(n
,i

)
≤
x
]

x

m = 1
m = 2
m = 3
m = 4
m = 5
m = 6
m = 7
m = 8
m = 9
m = 10

Figure 4.3: CDF for the distribution of the sum of the ` largest order
statistics of a sample of size 10 from the standard exponential distribution.



54 Chapter 4.3: Normal Distributions

Therefore, for the standard exponential distribution with a sample of size
n, the expected value for Z is

E[Z] =
E
[∑n

i=n−`+1X(n,i)

]
E
[∑n

i=1X(n,i)

]
− E

[∑n
i=m+1X(n,i)

]
=

∑n
i=n−`+1

∑i
j=1

1
n−j+1∑n

i=1

∑i
j=1

1
n−j+1 −

∑n
i=m+1

∑i
j=1

1
n−j+1

=

∑n
i=n−`+1

∑i
j=1

1
n−j+1∑m

i=1

∑i
j=1

1
n−j+1

=

∑`
i=1

∑n−`+i
j=1

1
n−j+1∑m

i=1

∑i
j=1

1
n−j+1

=

∑`
i=1 Ψ(−n)−Ψ(i− `)∑m
j=1 Ψ(−n)−Ψ(j − n)

=
`

m
Ψ(−n)−

∑`
i=1 Ψ(i− `)∑m
j=1 Ψ(j − n)

=
`

m
H−n−1 −

∑`
i=1Hi−`−1∑m
j=1Hj−n−1

, (4.7)

where Hn is the nth harmonic number and Ψ is the digamma function:

Ψ(x) =
d

dx
log Γ(x).

The summations in (4.7) can be further reduced to the rather cumbersome
closed form of

` sin(π n) sin(π `)
(

Ψ (`)n−Ψ (n)n− n− 1
)

nm sin (π n) sin (π `)
(

Ψ (m− n)−Ψ (−n)
)

+
`πn

(
sin(π n) cos (π `)− cos (π n) sin (π `)

)
nm sin (π n) sin (π `)

(
Ψ (m− n)−Ψ (−n)

) .
Therefore, the trimmed sum of order statistics of the exponential distri-

bution is well behaved, similar to the continuous uniform distribution.

4.3 Normal Distributions

Discovering expressions for the distributions of trimmed sums of normally
distributed random variables is still an open problem. We can, however,



Chapter 4.3: Normal Distributions 55

0

0.2

0.4

0.6

0.8

1

-20 -15 -10 -5 0 5 10 15

P
[ ∑ m i=

1
N

(0
,1

) (
n
,i

)
≤
x
]

x

m = 1
m = 2
m = 3
m = 4
m = 5
m = 6
m = 7
m = 8
m = 9
m = 10

Figure 4.4: CDF for the distribution of the sum of the m smallest order
statistics of a sample of size 10 from the standard normal distribution, cal-
culated from a Monte Carlo simulation.

plot such distributions using Monte Carlo simulation. First, a vector of size
10 was randomly populated with variates drawn from the standard normal
distribution N (µ = 0, σ = 1). The vector is then sorted and the sums of the
m smallest and ` largest elements is taken. This process was repeated 32000
times, the results of which are given in Figures 4.4 and 4.5.

As we can see, the normal distribution exhibits the same quick convergence
as the uniform and exponential distributions, albeit skewed by the fact that
the normal distribution is not positive. Therefore, let us consider the standard
normal distribution truncated on the interval [0, 1]:

P
[
N[0,1](0, 1) ≤ x

]
=

∫ x
0
P [N (0, 1) = t] dt

P [N (0, 1) = 1]− P [N (0, 1) ≤ 0]
=



0, x < 0

1, x > 1

erf
(
x
√

2
2

)
erf
(√

2
2

) , otherwise.

(4.8)

Since (4.8) is continuous and monotone, the Newton-Raphson method can



56 Chapter 4.3: Normal Distributions

0

0.2

0.4

0.6

0.8

1

-20 -15 -10 -5 0 5 10 15

P
[ ∑ n i=

n
−
`+

1
N

(0
,1

) (
n
,i

)
≤
x
]

x

` = 1
` = 2
` = 3
` = 4
` = 5
` = 6
` = 7
` = 8
` = 9
` = 10

Figure 4.5: CDF for the distribution of the sum of the ` largest order statis-
tics of a sample of size 10 from the standard normal distribution, calculated
from a Monte Carlo simulation.



Chapter 4.4: The Expected Value of Z 57

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

P
[ ∑ m i=

1
N

[0
,1

](
0
,1

) (
n
,i

)
≤
x
]

x

m = 1
m = 2
m = 3
m = 4
m = 5
m = 6
m = 7
m = 8
m = 9
m = 10

Figure 4.6: CDF for the distribution of the sum of the m smallest order
statistics of a sample of size 10 from the standard normal distribution trun-
cated in the range [0, 1], calculated from a Monte Carlo simulation.

be used to quickly calculate the inverse CDF to arbitrary precision. This, in
turn, allows for production of a random variate for the truncated standard
normal distribution using inverse transform sampling. The variate can then
be used for Monte Carlo simulation, as described above. The results for the
truncated standard normal distribution are given in Figures 4.6 and 4.7, and
exhibit a similarly fast convergence.

4.4 The Expected Value of Z

We have thus far established that the expected value of the sum of the order
statistics of every continuous uniform, standard exponential, standard nor-
mal, and truncated standard normal distribution has very low variance. In
fact, by the central limit theorem,

lim
n→∞

max
m=1...n

Var

(
E

[
m∑
k=1

X(n,k)

])
= lim
n→∞

Var

(
E

[
m∑
k=1

X(n,1)

])
=

1

12
.



58 Chapter 4.4: The Expected Value of Z

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

P
[ ∑ n i=

n
−
`+

1
N

[0
,1

](
0
,1

) (
n
,i

)
≤
x
]

x

` = 1
` = 2
` = 3
` = 4
` = 5
` = 6
` = 7
` = 8
` = 9
` = 10

Figure 4.7: CDF for the distribution of the sum of the ` largest order statis-
tics of a sample of size 10 from the truncated standard normal distribution
truncated in the range [0, 1], calculated from a Monte Carlo simulation.



Chapter 4.4: The Expected Value of Z 59

Therefore, the quotient of the expected values of the nominator and denom-
inator in Z should give a relatively unbiased estimation of the true expected
value of Z, which itself should have very low variance.

By (4.5) and (4.6), for large enough m and ` the expected value for Z will
be

E[Z] =
1
2`(a+ b)

1
2m(a+ b)

=
`

m
.

In the context of the approximation algorithm example, if the edge weights are
drawn from any uniform distribution then, for large enoughm, any sufficiently
large, randomly chosen subset of ` edges will with high probability be `

m times
optimal, regardless of the objective function. Furthermore, if ` = O(m) then
the solution is with high probability a constant factor of optimal.

In fact, this property holds in general:

P

[
m∑
i=1

X(n,i) ≤ x

]
d
= N

(
mE[X],

Var(X)

m

)

P

[
n∑

i=n−`+1

X(n,i) ≤ x

]
d
= N

(
`E[X],

Var(X)

`

)
,

and

E[Z] =
`E[X]

mE[X]
=

`

m
. (4.9)

This is a rather surprising result. This means that if we know the size
of the optimal solution is bounded below by m, then any randomly chosen
solution of size at most ` will, on average, be `

m times optimal. Consider the
Steiner network problem as an example. If there are α terminals, then we
know that the optimal solution must have at least

⌊
α
2

⌋
edges. Any feasible

solution to the problem is going to be an acyclic graph, which will have at
most n − 1 edges. Therefore, any randomly chosen feasible solution to the
Steiner network problem will be, on average, 2n−2

α times optimal. If every
vertex is a terminal, then any randomly chosen feasible solution is with high
probability 2-Optimal. Equation (4.9) has even stronger implications for
problems like minimum spanning tree. In that case, we know that (assuming
the graph is connected) the optimal solution has exactly n−1 edges, and any
feasible solution will also have exactly n− 1 edges. Therefore, any randomly
chosen feasible solution to the minimum spanning tree problem will with high
probability be a constant factor of optimal.

In conclusion, this chapter has motivated the fact that—even if the condi-
tions of the theoretical guarantees of 2-optimality (qq.v. Propositions 3 and 4)
are not met—the solutions produced by the distributed multiagent graph
search algorithm are with high probability 2-optimal.





Chapter 5

Solving Constrained Forest
Problems

Given a subset of the vertices of a graph, called terminals, the constrained
forest problem asks to find a minimum weight forest spanning the termi-
nals subject to a set of topological requirements. These requirements are
often represented using proper functions (qq.v. §2.3). Many constrained for-
est problems are NP-Hard. There were a number of groundbreaking results
in the 1990s which culminated in a very elegant and efficient centralized ap-
proximation algorithm for constrained forest problems using the primal-dual
schema [60, 73]. This opened the door for solving many constrained forest
problems in the sequential computation model.

In this chapter, we show that our generalized distributed constrained for-
est algorithm based on multidirectional graph search can likewise be applied
to a number of constrained forest problems. First, we continue our analysis
of Steiner network problems by empirically testing how close the algorithm
comes to the theoretical bounds described in Chapter 3. Later in this chapter
we give two additional examples of our framework’s application: the location
design and routing problem and art gallery problems. For each we give exam-
ples of the protocols that can be employed to fully distribute the algorithm,
along with more precise analysis of the number of rounds and quality of the
solution. Finally, we give empirical results for a number of cases in which the
problem and/or domain does not necessarily satisfy the conditions required
for the aforementioned theoretical bounds to hold.

61



62 Chapter 5.1: Steiner Network Problems

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
li

ze
d

C
os

t

Edge Density

Figure 5.1: Normalized cost of the solutions discovered for 200 node random
graphs with 200 terminals and varying edge density. Each data point is the
distribution over 32 random graphs. Boxes surround the middle two quartiles.
The mean of each distribution is depicted as “ ”. A normalized cost of 0.0
means that the optimal solution was discovered, whereas a cost of 1.0 means
that the costliest possible solution was discovered.

5.1 Steiner Network Problems

In order to test the average case performance of the generalized distributed
constrained forest algorithm, a series of graphs on 200 vertices of varying
edge density were randomly generated using the Erdős-Rényi model G(n, p)
with n = 200 vertices and an edge density p ∈ [0.05, 1.0]). For each edge
density p, 32 random graphs were generated, the edges of which were weighted
according to a uniform distribution. The algorithm was then run with best
case concurrency (i.e., one agent per vertex). The optimality results for these
experiments are given in Figure 5.1. This can be interpreted as implying that
the algorithm produces solutions that are very close to the optimal solution,
especially when the search space has a high branching factor. Given that
the percentage of terminals was very high, the number of messaging rounds
required for the algorithm to reach quiescence was only 3.93 with a standard
deviation of 0.70.

Next, we investigated the algorithm’s worst case performance: when the
edge density (i.e., branching factor) is low and the number of agents is lim-
ited. We therefore fixed the edge density at 0.1 and re-ran the experiments
with a varying number of terminals. The results of these experiments are in
Figure 5.2. We see that even in the absolute worst case (i.e., with a very
sparse graph and few agents to perform the concurrent search) the number of
messaging rounds required by the algorithm is only about 12, and this quickly
converges to the previous best case of about four rounds as the number of



Chapter 5.2: Location Design Problems 63

2
4
6
8

10
12
14
16
18
20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
es

sa
gi

n
g

R
ou

n
d

s

% Vertices that are Terminals

Figure 5.2: Average number of messaging rounds required for the algorithm
to reach quiescence for 200 node random graphs with an edge density of 0.1.
Error bars represent variance.

terminals increases.

The intuition behind the empirical runtime results is that the algorithm
will require approximately as many rounds as the diameter of the intersection
graph (q.v. footnote 1 on page 31) of G formed from the set of terminals. In
the worst case this is clearly O(n), however, if the number of terminals is
high then the diameter is likely to be very small. Furthermore, if the graph is
known to have scale-free properties (which are very common in many relevant
domains), then the diameter of G will be logarithmic, thus the algorithm will
run in O(log n) time.

Finally, we investigated the average case approximation bounds of the
algorithm. The number of vertices was set at 20, being a size small enough
such that calculation of the optimal solution is tractable on modern hardware.
We could then compare the approximated solution of the proposed algorithm
to the cost of optimal. These results are given in Figure 5.3. It is clear from
the results that the average case approximation bound is actually better than
the theoretical upper bound of 2; on average the algorithm produces solutions
about 1.3 times the cost of optimal.

5.2 Location Design & Vehicle Routing Prob-
lems

Recall from §1.1.1 that the Location Design and Routing problem asks to find
a subset of “depot” nodes and a spanning forest of a graph such that every
connected component in the forest contains at least one depot [3].

The sequential variant of this problem has been thoroughly studied in the



64 Chapter 5.2: Location Design Problems

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
p

p
ro

x
im

at
io

n
B

ou
n

d

% Vertices that are Terminals

Figure 5.3: Solution quality of the algorithm for a number of random graphs
on 20 vertices with varying number of terminals. The y-axis is the perfor-
mance guarantee of the approximation (a value of 1.0 means the optimal
solution was found). Each column is the distribution over 32 random graphs,
depicted using a similar scheme as that of Figure 5.1.

literature [3, 73, 5, 7], culminating in the discovery that the problem submits
to bounded approximation in polynomial time. There are therefore three
primary motivations for developing a distributed approximated solution to
the problem:

1. the problem itself is naturally distributed—there may not be an obvious
central node in which to perform the optimization;

2. local properties of the problem seem to allow for speedups from dis-
tributed processing; and

3. in certain environments, such as sensor networks, hardware restrictions
might necessitate decentralization in order to save memory.

Although there is very little in the literature on the parallelization and
distribution of this specific problem, the related problem of finding a mini-
mum spanning forest has been widely studied and is known to be soluble in
logarithmic time with a linear number of processors [83, 84]. In fact, finding
a minimum spanning forest is a special case of the location design and rout-
ing problem in which depot opening costs are very large (vi&., greater than
the diameter of the graph). The converse, however, is not true: There is no
known trivial reduction from the location design and routing problem to the
spanning forest problem.

In the remainder of this section we introduce our algorithm for solving
the distributed location design and routing problem. In §5.2.1 formalizes



Chapter 5.2: Location Design Problems 65

the problem such that it can be mapped to an equivalent constrained for-
est problem and §5.2.2 then introduces a parallel version of the algorithm.
Next, §5.2.3 proves a series of propositions about the algorithm, including its
correctness, completeness, and approximation & runtime bounds. Finally, in
§5.2.4, we show that the parallel algorithm can be distributed in an asyn-
chronous network.

5.2.1 Problem Formalization

Given a graph G = 〈V,E〉 with both vertex and edge weights w : V ∪E → Q,
the Location Design and Routing Problem asks to find a subset of “depot”
vertices D ⊆ V and a spanning forest F ⊆ E such that each connected
component in F contains at least one depot. The cost of opening a depot at
a vertex is modeled using the vertex weights; for example, the cost of opening
a depot at vertex v ∈ V is w(v). Therefore, we want to minimize the weight
of D and F :

minimize

(∑
d∈D

w(d)

)
+

(∑
e∈F

w(e)

)
subject to:

(∃d ∈ D : v is connected to d in F) , ∀v ∈ V
D ⊆ V,
F ⊆ E.

For sake of analysis, the representation of this optimization problem can be
simplified by recasting it as a variation of a constrained forest. Therefore,
let us augment the graph with special depot vertices di associated with each
original vertex vi. Next, add an edge from each vertex to its associated depot
vertex, weighted with the cost of opening a depot at that vertex. The new
overall set of edges is the original set of edges unioned with the set of new
depot edges. Let R = {v1, . . . , vn} be the set of original (input) vertices and
let T = {d1, . . . , dn} be the set of new special depot vertices with the new
overall set of vertices V = R ∪ T . A vertex vi will be a part of D (i.e., it
will be chosen to become a depot) if the edge from it to its associated depot
vertex is a part of the final spanning forest: 〈vi, di〉 ∈ F =⇒ vi ∈ D. The
optimization problem can now be rewritten such that it amounts to finding
an acyclic subset of the new edges that connects each v ∈ R to at least one
d ∈ T . Since this subset is a forest that spans R we will hereafter refer to it
as “the spanning forest”. Note, however, that the spanning forest does not
necessarily span all of T . An example of this augmented graph is given in
Figure 5.4a.

Assume that w(e) now denotes the edge weights. The new optimization
problem on the augmented graph can be captured as the following integer



66 Chapter 5.2: Location Design Problems

100

10
0

10
0

10
0

15
0

1
00

150

224
(a) Augmented distribution net-
work.

(b) The optimal solution.

Figure 5.4: (a) gives the augmented graph corresponding to the distribution
network in Figure 1.2a with a uniform depot opening cost of 100. Original
vertices are and the special depot vertices are . (b) is the optimal solution
to the augmented network, corresponding to the solution in Figure 1.2b.

program:

minimize
∑
e∈E

w(e)xe

subject to:

x(δ(S)) ≥ |S ∩ T |, ∀S ⊂ V : S 6= ∅
xe ∈ {0, 1}, ∀e ∈ E,

(LDRP-IP)

where each variable xe is an indicator as to whether the edge e is a mem-
ber of the final spanning forest, δ(S) is the set of edges having exactly one
endpoint in S, and x(F ) 7→

∑
e∈F xe. Therefore, any forest F ⊆ E will be a

feasible solution to the problem if every connected component S of the forest
has at least one depot. Let (LP) denote the linear programming relaxation
of (LDRP-IP) obtained by relaxing the integrality restriction on the variables
to xe ≥ 0. The dual of (LP) is

maximize
∑
S⊂V

χ
(
S ∩ T

)
yS

subject to: ∑
S:e∈δ(S)

yS ≤ w(e), ∀e ∈ E

yS ≥ 0, ∀S ⊂ V : S 6= ∅,

(LDRP-D)

where χ : X → {0, 1} is an indicator function: χ(X) 7→ 1 ⇐⇒ X 6= ∅.
An edge is tight if w(e) =

∑
S:e∈δ(S) yS . Let Z∗LDRP-LP be the cost of the



Chapter 5.2: Location Design Problems 67

optimal solution to (LP) and let Z∗LDRP-IP be the cost of the optimal solution
to (LDRP-IP). It is a folklore result that Z∗LDRP-LP ≤ Z∗LDRP-IP.

5.2.2 Parallel Computation Model

The basic mechanism of the algorithm follows that of constrained multidi-
rectional graph search. We start off with an empty forest; each vertex is a
member of its own connected component. Every round, each depot-less com-
ponent greedily chooses to add one of its cut edges to the forest, merging with
the component on the other end of the edge. When a component merges with
another component containing a depot, the new component after the union
stops actively growing. When all components contain depots the algorithm
terminates.

For simplicity, the algorithm is first introduced as a parallel algorithm
according to the concurrent read exclusive write (CREW) parallel random
access machine (PRAM) model. The remainder of this section provides the
notation and mathematics required to formally define and model the algo-
rithm. This will later be used in §5.2.3 to provide formal bounds on the
runtime and performance of the algorithm, and also to prove correctness and
completeness. We will later show in §5.2.4 that this same algorithm can be
distributed in an asynchronous network.

Let Ft be the partially constructed spanning forest at the beginning of
round t. Let Ct be the set of connected components in Ft. For sake of brevity
and simplicity, let µt : V → Ct be a function mapping vertices to their
associated connected component during round t; therefore, µt(v) 7→ Ci =⇒
v ∈ Ci ∈ Ct. A vertex that is incident to at least one edge in the cut of
its connected component is said to be in the fringe. Let gt : V → R be a
mapping of vertices to a real number during round t. These values represent
the amount of slack remaining in the dual variables associated with a vertex.
An example of this notation is given in Figure 5.5.

As it was the case earlier in Chapter 3, let Jt : V ×V → {0, 1} be a binary
relation defining which edges will become tight during round t. Each depot-
less component will choose to add the edge in its fringe that has minimal
weight and dual variable slack. Therefore, Jt(u, v) = 1 if and only if

(
µt(u) ∩ T = ∅

)
∧

(
〈u, v〉 = arg min

〈i,j〉∈δ(µt(u))

w(〈i, j〉)− gt(i)− gt(j)

)
. (5.1)

We assume that each edge has a unique identifier over which there is a total
ordering. Ties in the minimization are broken based upon the ordering of
the edges. Let J+ denote the transitive closure of J . Note that J does not
necessarily commute: J(u, v) 6=⇒ J(v, u). Also note that as long as there
exists a feasible solution to (LDRP-IP) then the minimization ensures that



68 Chapter 5.2: Location Design Problems

each depot-less connected component must have exactly one edge in the fringe
that becomes tight each round:

∀C ∈ Ct, ∃〈v, u〉 ∈ δ(C) : C ∩ T = ∅ =⇒ Jt(v, u) = 1.

We denote by Ft the partially constructed spanning forest during round
t, initialized to F0 = 〈V, ∅〉. The forest is updated each round with the set of
all edges that became tight during the round:

Ft+1 = Ft ∪ {〈u, v〉 ∈ E : Jt(u, v) ∨ Jt(v, u)}.

For a set S ⊆ V , let yS be the dual variable associated with S. Initially
all such variables are set to zero. Note that in actuality these variables need
not be made part of an implementation of the algorithm; they exist solely for
the purpose of theoretically proving properties of the algorithm [73]. These
dual variables are implicitly updated as follows:

yS ←

{
w(〈i,j〉)−gt(i)−gt(j)

1+Jt(j,i)
if ∃i ∈ S ∈ Ct, j /∈ S : Jt(i, j),

0 otherwise.
(5.2)

The g values are initialized such that ∀v ∈ V : g0(v) = 0. They are
updated each round such that

gt+1(v) = gt(v) + yµt(v). (5.3)

The value gt(v) can therefore be interpreted as the amount of slack remaining
in the dual variables during round t before an edge incident to vertex v
becomes tight.

Let τ be the number of rounds required for the algorithm to terminate—
or, in the case of the distributed algorithm, the number of rounds required
to reach quiescence. Therefore, τ is the earliest round during which there are
no components without depots:

τ = min
t∈N0

(
∀C ∈ Ct : C ∩ T 6= ∅

)
. (5.4)

The notation is now sufficient to introduce the parallel version of the
algorithm, given in Algorithm 3. A snapshot of the algorithm’s execution,
along with an example of our notation, is given in Figure 5.5.

5.2.3 Analysis

The various performance guarantees of the algorithm are proven in this sec-
tion. First, Lemmas 5 and 6 lead to Proposition 6 which implies that the
solutions found by the algorithm are acyclic and thereby forests, implying
that they are primal feasible. Proposition 7 states that the main loop (line 10



Chapter 5.2: Location Design Problems 69

Algorithm 3 The parallel location design and routing algorithm.
1: procedure Parallel-Location-Design(G,T,w)

Require: G = 〈V,E〉 is an undirected graph already augmented with the special depot
vertices. T ⊂ V is the set of “special” depot vertices. w : E → [1, 3

2
] ∈ Q is a weight

or cost function such that each edge e ∈ E has an associated cost. µt : V → 2V is a
convenience function mapping vertices to their connected component in Ct.

Ensure: F ′ is the resulting spanning forest.
2: t← 0
3: F ← ∅ /* Implicitly set yS = 0 for all S ⊂ V */

4: for all v ∈ V do in parallel
5: S ← {v}
6: µ0(v)← S
7: C0 ← C0 ∪ {S}
8: g0(v)← 0
9: end for

10: while ∃C ∈ Ct : C ∩ T = ∅ do
11: t← t+ 1
12: Ct ← Ct−1

13: for all C ∈ Ct−1 do in parallel
14: I(C)← 0 /* I is a temporary map */

15: K(C)← ∅ /* K is a temporary map */

16: end for
17: for all C ∈ {S ∈ Ct−1 : C ∩ T = ∅} do in parallel
18: Find an edge e = 〈u, v〉 ∈ δ(C) such that u ∈ C and ε = w(e) − gt−1(v) −

gt−1(u) is minimized.
19: F ← F ∪ {e}
20: Ct ← (Ct \ ({µt−1(v)} ∪ {µt−1(u)})) ∪ {µt−1(v) ∪ µt−1(u)}
21: µt(u)← µt−1(v) ∪ µt−1(u)
22: K(C)← µt−1(v)
23: I(C)← ε
24: end for
25: for all v ∈ V do in parallel
26: if K(K(µt−1(v))) = µt−1(v) then

27: I(µt−1(v))← I(µt−1(v))

2
28: end if
29: gt(v)← gt−1(v) + I(µt−1(v))
30: end for
31: A← the keys of I sorted by descending ε value. /* Implicitly used for analysis;

need not be implemented */

32: for i← 1 to |A| do /* Implicit */

33: for j ← 1 to i do /* Implicit */

34: yA[j] ← yA[j] + I(A[i]) /* Implicit */

35: end for
36: end for
37: end while
38: F ′ ← {e ∈ F : For some connected component N of 〈V, F \{e}〉 it is true that N ∩

T = ∅}
39: end procedure



70 Chapter 5.2: Location Design Problems

v1

v2

v3

v4

d1

d2

d3

d4

0

0

0

0

1 1

1

2

t=0

 ∀S⊂V :yS=0

C0={{v1},{v2},{v3},{v4},{d1},{d2},{d3},{d4}}

∀i∈{1,2,3,4}:g0(vi)=g0(di)=0

t=1


J1(v1,d1)=J1(v2,v3)=J1(v3,v2)=J1(v4,d4)=1

g1(v1)=g1(v4)=g1(v2)=g1(v3)=100

y{v1}=y{v4}=100, y{v2}=y{v3}=50

C1={{v1,d1},{v2,v3},{v4,d4},{d2},{d3}}

t=2

 J2(v3,d3)=1

y{v2,v3}=100

C2={{v1,d1},{v2,v3,d3},{v4,d4},{d2}}

τ=2 because every C∈C2 contains a depot.

Figure 5.5: Snapshots for three rounds of the algorithm solving the aug-
mented distribution network problem of Figure 5.4a. Connected components

are visualized as dashed regions. The # labels denote the round number
during which a connected component was created. Directions on the edges
represent the component that chose to make that edge tight. In other words,

=⇒ J( , ).



Chapter 5.2: Location Design Problems 71

of Algorithm 3) will have a logarithmic number of iterations. Claim 5 leads
to Proposition 8 which states that the solutions found by the algorithm are
dual feasible. Finally, Lemma 7 leads to Proposition 9 which states that as
long as the edge weights are embedded in the proper metric space then the
algorithm is a 2-approximation.

Lemma 5. Any cycle in the intersection graph (q.v. footnote 1 on page 31)
of Ft+1 formed from Ct must consist solely of edges along the cuts between
depot-less components.

Proof. Assume, on the contrary, that there exists a cycle containing an edge
that is incident to at least one component containing a depot. Let 〈u, v〉 be
such an edge and assume µt(v) contains at least one depot. (5.1) implies that
v’s connected component has no outgoing edges,

∀i ∈ µt(v) : (¬∃j ∈ V : Jt(i, j)),

which contradicts the fact that 〈u, v〉 is in a cycle.

The “potential cost” of an edge is the fractional quantity associated with
ε on line 18 of Algorithm 3.

Lemma 6. Any cycle in the intersection graph of Ft+1 formed from Ct must
consist of edges of equal potential cost.

Proof. Let e1 = 〈u1, v1〉 be an edge in a cycle. (5.1) implies that all edges
in a cycle must be cuts between existing connected components. Therefore,
µt(u1) 6= µt(v1). Furthermore, there must be another edge in the cycle,
e2 = 〈u2, v2〉, such that µt(v2) = µt(u1). It must also be true that Jt(u1, v1) =
Jt(u2, v2) = J+

t (u1, v2) = 1. By Lemma 5 there are no depots in any of the
components in the cycle. Therefore, applying (5.1) gives

w(e1)− gt(u1)− gt(v1) ≤ w(e2)− gt(u2)− gt(v2).

In general, this inequality will hold for the incoming and outgoing edges of
any connected component in the cycle. Therefore, by transitivity,

w(e1)− gt(u1)− gt(v1) ≤ w(e2)− gt(u2)− gt(v2)

≤ w(e1)− gt(u1)− gt(v1),

implying that

w(e1)− gt(u1)− gt(v1) = w(e2)− gt(u2)− gt(v2).

Proposition 6. The intersection graph of Ft+1 formed from Ct is acyclic.



Proposition 7.

72 Chapter 5.2: Location Design Problems

Proof. Assume, on the contrary, that there is a round t during which a cycle
of length ` is formed. Since the graph is simple, ` > 1. By Lemma 6, all of the
edges in the cycle must be of equal potential cost. Therefore, each connected
component will have had a tie between two fringe edges which must have
been broken using the edge ordering. Therefore, either ` = 1 or there are two
edges with the same unique identifier, both of which are contradictions.

Claim 3. If all edge weights are coprime, then Proposition 6 will hold even
if the unique identifier ordering assumption does not.

Corollary 2. F0, . . . , Fτ are all acyclic.

Proof. Since F0 = 〈V, ∅〉, the base case is acyclic. Induction over Proposi-
tion 6 then proves the corollary.

Let Af (t) = A(t) be an upper bound on the number of depot-less com-
ponents at the beginning of round t. Similarly, let Lf (t) = L(t) be an up-
per bound on the total number of components at the beginning of round t.
Clearly,

A(t) ≥ |{C ∈ Ct : C ∩ T = ∅}|, and

L(t) ≥ |Ct| ≥ A(t).

In general, every depot-less component will union with another component
during every round. Regardless of whether such a component chooses to
union with a component containing a depot or one that is depot-less, the
total number of components will decrease by one half the number of depot-less
components. Therefore L(t) = L(t− 1)−A(t− 1)/2. Now let us consider the
extrema for the change in the number of depot-less components. If all depot-
less components choose to union with other depot-less components then we
have A(t) = A(t−1)/2. On the other hand, if as many depot-less components
union with components containing depots as possible, then A(t) ≤ min(A(t−
1), L(t− 1)−A(t− 1)). Therefore, the general recurrences for A(t) and L(t)
are:

A(t) = max

(
A(t− 1)

2
,min

(
A(t− 1), L(t− 1)−A(t− 1)

))
, (5.5)

L(t) = L(t− 1)− A(t− 1)

2
.

The initial conditions for the recurrences are clearly

A(0) = |{C ∈ C0 : C ∩ T = ∅}| = |R|,
L(0) = |C0| = |R|+ |T | = 2|R|.

Claim 4. A(t− 1)/2 will always dominate the maximization in (5.5).



Chapter 5.2: Location Design Problems 73

Validation of this claim will be given in the proof of the following propo-
sition.

The algorithm will terminate after a logarithmic number of rounds (i.e.,
iterations of the main loop on line 10 of Algorithm 3): τ = O(log n).

Proof. This follows from the fact that the algorithm will terminate once the
number of depot-less components is zero:

∀t ∈ N0 : A(t) = 0 =⇒ t ≥ τ.

Therefore, the burden of this proof is to show that, the A(t) recurrence will
converge exponentially, implying that τ = O(log n).

If Claim 4 holds, then it is clear that the A(t) recurrence will converge
exponentially:

A(t) =
A(0)

2t

L(t) = 2|R| −
t∑
i=0

A(0)

2i
.

Let k = A(0)
2|R| and observe that k = 1

2 . Substituting 2k|R| for A(0) ensures

that the minimization in A(t) will always evaluate to L(t − 1) − A(t − 1)
because

∀t ∈ N0 : A(t) ≥ L(t)−A(t)

⇐⇒ 2|R| k
2t
≥ 2|R|

(
1−

(
t∑
i=0

k

2i

)
− k

2t

)

⇐⇒ 2k

2t
≥ 1−

t∑
i=0

k

2i

⇐⇒ k ≥ 2t

1 + 2t+1
,

which is true because 2t/(1 + 2t+1) is bounded above by 1
2 . Therefore, pro-

vided Claim 4 holds, (5.5) can be simplified to

A(t) = max

(
A(t− 1)

2
, L(t− 1)−A(t− 1)

)
.

Claim 4 obviously holds for the base case of t = 1 because A(0)/2 = 2k|R| is

bounded below by L(0) − A(0) = 2|R| − 2|R|
2 . Therefore, Claim 4 will hold

as long as
A(t)

2
≥ L(t)−A(t).



74 Chapter 5.2: Location Design Problems

This equates to

k ≥ 2t+1

(
1−

(
t∑
i=0

k

2i

)
− k

2t

)

≥ 2× 4t

2t + 4t+1
,

which must be true because (2× 4t)/(2t + 4t+1) is bounded above by 1
2 .

Claim 5. Let t′ be the round during which an edge e = 〈u, v〉 is added to
the spanning forest. Then e will not be in the cut of any component in a
subsequent round:

∀t > t′, C ∈ Ct : e /∈ δ(C).

Proof. µt′+1(u) = µt′+1(v) = µt′(u) ∪ µt′(v). Therefore, in all rounds sub-
sequent to t′ both endpoints of e are in the same component and therefore
cannot be in the fringe.

Proposition 8. The vector y is a feasible solution to (LDRP-D) and has the
property ∑

e∈Fτ

w(e) ≤
∑
e∈Fτ

∑
S:e∈δ(S)

yS .

Proof. The fact that y is a feasible solution to (LDRP-D) is a consequence
of the fact that y is initially zero and is updated according to (5.2). Let t
be the round during which an edge e = 〈u, v〉 ∈ Fτ was added to the forest.
From (5.3), note that(

gt(u) =

t−1∑
i=0

yµi(u)

)∧(
gt(v) =

t−1∑
i=0

yµi(v)

)
.

Furthermore, at the beginning of round t the potential for e is

ε = w(e)− gt(u)− gt(v).

Once e is added to Ft, the dual variables yµt(u) and yµt(v) are updated ac-
cording to (5.2). Then there are three possible cases:

1. both u and v’s components are depot-less and e is added mutually:
µt(u) ∩ T = µt(v) ∩ T = ∅ and Jt(u, v) = Jt(v, u);

2. both u and v’s components are depot-less and e is not added mutually:
µt(u) ∩ T = µt(v) ∩ T = ∅ and Jt(u, v) 6= Jt(v, u); or

3. u’s component has a depot and v’s does not, or vice versa: |µt(u)∩T |+
|µt(v) ∩ T | = 1.



Proposition 9.

Chapter 5.2: Location Design Problems 75

In case 1,

yµt(u) + yµt(v) =
ε

1 + Jt(v, u)
+

ε

1 + Jt(u, v)
= ε,

implying that

w(e) =

t∑
i=0

(
yµi(u) + yµi(v)

)
. (5.6)

For case 2, assume without loss of generality that Jt(u, v) = 1 and Jt(v, u) =
0. For case 3, assume without loss of generality that µt(u) ∩ T = ∅ and
µt(v) ∩ T 6= ∅. Then for both of these cases note that

yµt(u) =
ε

1 + Jt(v, u)
= ε,

implying that

w(e) = yµt(u) +

t−1∑
i=0

(
yµi(u) + yµi(v)

)
. (5.7)

Claim 5 implies that the summations in (5.6) and (5.7) comprise all sets that
cut e, thus completing the proof.

Lemma 7 (Williamson, & al. [14, Theorem 3.6]). Let H be the intersection
graph of the final spanning forest Fτ formed from Ct. Remove all isolated
vertices in H that correspond to components in Ct that have depots. Then no
leaf in H corresponds to a component containing a depot.

Proof. This is a transcription of the proof, reproduced here for completeness
using our notation in the specific domain of the Location Design and Routing
Problem. Assume the contrary: Let v be a leaf, let Cv be its associated com-
ponent containing a depot, let e be the edge incident to v, and let C ⊆ V be
the component of F which contains Cv. Let N and C \N be the two compo-
nents formed by removing edge e from the edges of component C. Without
loss of generality, say that Cv ⊆ N . The set N \ Cv is partitioned by some
of the components of the current round; call these C1, . . . , Ck. Since vertex
v is a leaf, no edge in Fτ connects Cv to any Ci. Thus by the construction of
Fτ , ∀i ∈ {1, . . . , k} : Ci contains at least one depot. Since Cv also contains
at least one depot, it follows that N must too. Clearly, if two components S
and B both contain depots and B ⊆ S, then the component S \B must also
contain a depot. Since we know that C contains a depot then N \C must as
well, and thus by the construction of Fτ , e /∈ Fτ , which is a contradiction.

We have thus far proven that Algorithm 3 produces a feasible solution
to both (LDRP-IP) and (LDRP-D) in a logarithmic number of rounds. It
therefore only remains to bound the quality of the solution, which we shall
do now. To prove that the algorithm is a 2-approximation, we use the same



76 Chapter 5.2: Location Design Problems

technique of defining an invariant over the weights of the edges added to the
forest as in the generalized algorithm.

The cost of the final spanning forest Fτ is bounded above by

(
2− 2

|R|

)
Z∗LDRP-IP

if the normalized edge weights are in the range
[
1, 3

2

]
.

Proof sketch. The basic intuition of our result is that the average degree of
a vertex in a forest of at most n vertices is at most 2 − 2

n . Cf. the proof of
Proposition 3 on page 34.

This section has served to prove that the parallel version of the algorithm
is correct, complete, and maintains the runtime and approximation bounds
we claim. In the next section we will show that it can be trivially extended
to a distributed algorithm.

5.2.4 Distributing the Algorithm

We make the same assumptions on the communications network as those of
multidirectional graph search given in §3.1.2. Namely, we assume that the
communications network provides guaranteed delivery of messages, however,
there may be arbitrary latency (i.e., the network is asynchronous [46]). With-
out loss of generality, we assume that there is one intelligent agent per vertex
in the graph. We further assume that all agents are honest and correct and
thus need not consider the problem of Byzantine failure [85]. The agents are
non-adversarial insofar as their primary goal is to find a feasible solution to
the location design and routing problem. The collective is therefore what is
called a cooperative multiagent system [17]. Agents’ perceptions of the graph
being optimized (e.g., the network topology) are consistent, possibly through
the use of a distributed consensus algorithm [46]. Each agent/vertex has a
unique identifier with a globally agreed ordering. This ordering can be used
to construct a total ordering over the edges (e.g., by combining the unique
identifiers of the incident vertices).

The proposed distributed algorithm is round-based, with each round cor-
responding to a single iteration of the main loop (line 10) of the parallel algo-
rithm. The rounds proceed asynchronously between connected components.
Therefore, as the connected components grow throughout the execution of
the algorithm, the rounds naturally become synchronized.

The distributed version of the algorithm, given in Algorithm 4, uses simple
synchronous message passing in place of the shared memory of the parallel
algorithm. The distributed algorithm is proven deadlock-free in the following
proposition.

Proposition 10. Algorithm 4 is deadlock-free.



Chapter 5.2: Location Design Problems 77

Proof. The only blocking operations in the algorithm occur on lines 12, 15,
22, 27, and 38.

Waiting for an Update message on line 12 will clearly not deadlock since
UpdateRequest messages are sent on the line previous, and the procedure on
line 1 immediately sends an Update message in reply to requests.

Similarly, line 14 ensures that line 15 will not deadlock.

The fact that the procedure on line 7 contains no blocking operations
ensures that any Union message will be immediately replied with an Ack

message. Therefore, line 22 will not deadlock.

Any vertices that choose to make an incident edge tight will block on
line 27 unless either the choice of edge was mutual or the connected compo-
nent on the other end of the edge contains a depot. Let 〈v, u〉 be such an
edge. Note that J(v, u) = 1 and J(u, v) = 0. In such a case, v will be added
by u to I upon receipt of v’s Union message on line 14. Now, by a similar
argument to the proof of Lemma 6, note that there must be some x and y
such that J+(u, y) and J(y, x) = 1 and either J(x, y) = 1 or x’s component
already contains a depot (otherwise there would be a cycle). Therefore, u
will not deadlock on line 27 and will eventually send an Adding message to v
on line 32.

Finally, the main loop invariant on line 10 ensures that only depot-less
components block on line 12. Furthermore, (5.1) ensures that there must be
exactly one vertex in each depot-less component that chooses to add exactly
one edge during each round. Therefore, line 38 will not deadlock.

Assuming all messages can be both unicast and broadcast in a constant
number of messaging rounds then, by the same argument as in the proof of
Proposition 7, the main loop of the distributed algorithm on line 10 will run in
a logarithmic number of iterations and thereby will have a logarithmic number
of messaging rounds. If this assumption does not hold—for example, if ad hoc
routing is required—then the algorithm can be trivially extended to support
the Broadcast-Message function itself. To do this, the algorithm will use
the partially constructed spanning trees within each connected component
for multicast.

The most expensive operations in the distributed algorithm are

1. determining the fringe edge with minimal potential; and

2. merging two connected components once an edge between them be-
comes tight.

Should efficient broadcast be unavailable, one way of implementing these op-
erations is to have broadcast messages convergecasted up the partially con-
structed spanning tree in the component. This method was used to solve a
similar problem in [68]. The root of the tree (e.g., the vertex that was added



78 Chapter 5.2: Location Design Problems

Algorithm 4 The distributed location design and routing algorithm. Mes-
sage handlers are given in Algorithm 5.

1: procedure Distributed-Location-Design(v, κ)
Require: κ is the cost of opening a depot at v.

2: C ← ∅ /* The other fringe vertices in our component. */

3: N ← δ({v}) ∪ {〈v, dv〉} /* The neighborhood of v along with the special depot
vertex dv */

4: F ← ∅ /* The spanning forest of our component. */

5: w(dv)← κ
6: for all i ∈ δ(C) ∪ {v} do
7: g(i)← 0
8: end for
9: I ← ∅

10: while F does not contain a depot do
11: Broadcast-Message(UpdateRequest) to all u ∈ N
12: Block until we have received and handled all Update messages from N .
13: Find an edge e = 〈v, u〉 ∈ N such that u /∈ C and ε = w(e) − g(v) − g(u) is

minimized.
14: Broadcast-Message(Potential〈ε〉) to all c ∈ C
15: Listen for all broadcast Potential messages from the fringe
16: if ε is the smallest in the fringe and ties are broken in our favor then
17: N ← N \ {u}
18: if u = dv then
19: Cm ← {u}
20: else
21: Send-Message(Union〈e〉) to u
22: Wait for an Ack〈m,Cm〉 message from u
23: if m = Mutual then /* u also chose to make edge e tight */

24: ε← ε
2

25: else
26: if m = Not-Mutual then /* this means u does not yet have a depot

*/

27: Block until we have received and handled an Adding〈ea, εa, Ca〉
message from u

28: end if
29: Cm ← Ca
30: end if
31: end if
32: Broadcast-Message(Adding〈e, ε, Cm〉) to all c ∈ C ∪ I
33: I ← ∅
34: C ← C ∪ Cm
35: g(v)← g(v) + ε
36: F ← F ∪ {e}
37: else
38: Block until we have received and handled an Adding message from another

fringe member
39: end if
40: end while
41: end procedure



Chapter 5.3: Art Gallery Problems 79

Algorithm 5 Message handlers for Algorithm 4.
1: procedure Handle-Update-Request-Message(UpdateRequest sent by u)
2: Send-Message(Update〈v, g(v)〉) to u
3: end procedure
4: procedure Handle-Update-Message(Update〈vu, gu〉 sent by u)
5: g(vu)← gu
6: end procedure
7: procedure Handle-Union-Message(Union〈eu〉 sent by u)
8: if e = eu then
9: Send-Message(Ack〈Mutual, C〉)

10: else if F already contains a depot then
11: Send-Message(Ack〈Has-Depot, ∅〉)
12: else
13: Send-Message(Ack〈Not-Mutual, ∅〉)
14: I ← I ∪ {u}
15: end if
16: end procedure
17: procedure Handle-Adding-Message(Adding〈ea, εa, Ca〉)
18: F ← F ∪ {ea}
19: g(v)← g(v) + εa
20: C ← C ∪ Ca
21: end procedure

the earliest and is of highest unique identifier) can then perform the operation
and unicast the result back down to the relevant fringe member(s).

This section has applied the technique of distributed multidirectional
graph search to the location design and routing problem. The algorithm
guaranteed to run in a logarithmic number communication rounds. Provided
that the weight of the heaviest edge added in a round is no more than 150%
of the lightest edge, the algorithm is guaranteed to produce a solution whose
cost is no worse than two times optimal. This invariant can be maintained
in general by embedding the true edge weights into [1, 3

2 ] ∈ Q.

5.3 Art Gallery Problems

Art gallery problems generally ask to find the minimum number of guards
required to observe the interior of a polygonal area [8]. Over the past thirty
years since their proposition, these problems have been thoroughly studied
by the computational geometry community. Interest in art gallery problems
has seen a recent resurgence given their application to a number of areas of
multiagent systems. For example, many robotics, sensor network, wireless
networking, and surveillance problems can be mapped to variants of the art
gallery problem. Since such problems can be naturally distributed, a logical
approach is to apply the multiagent paradigm (i.e., each guard is an agent).

As a motivating scenario, consider a wireless sensor network such as the
one pictured in Figure 1.3. Since one goal of the network is to maximize



80 Chapter 5.3: Art Gallery Problems

survivability, it may be desirable to conserve battery power by having as few
sensors active as necessary, especially for sensors with wide overlapping fields
of view. The problem is then to find a minimum subset of sensors that need
to remain active in order to provide a desirable level of coverage. As another
scenario, consider a group of mobile robots each equipped with a wireless
access point. The objective of the robots is to maximally cover an area
with the wireless network. As the robots are traveling between waypoints,
though, it is highly likely that there will be a large amount of overlap in
the coverage. Therefore, in order to save power, the robots might want to
choose a maximum subset of robots that can lower their transmit power
while still retaining coverage. The difficulty in each of these scenarios is for
the agents to collectively find the solution without centralizing computation.
Centralization is infeasible either due to lack of resources (i.e., no single
agent has powerful enough hardware to solve the global problem) or due to
lack of time (i.e., centralizing the problem will take at least a linear number
of messaging rounds). These problems are NP-Hard and can be modeled as
art gallery problems.

Solving art gallery problems using multiagent systems is not a new idea.
In Lass, & al. [86], we applied the multiagent coordination paradigm of Dis-
tributed Constraint Optimization (DisCOP) to a variant of the problem in
which a fixed number of robotic guards must patrol a polygonal area. The
difficulty with using DisCOP, however, is that all known algorithms that pro-
vide a constant bound on the quality of the solution will in the worst case
be exponential in either messaging or memory [87]. Whereas DisCOP is a
general problem solving paradigm, Ganguli, & al., developed a multiagent
algorithm specifically for solving art gallery problems [88]. This algorithm
has several desirable properties including optimality, however, there is no
theoretical bound on runtime.

The dominating set problem is a generalization of the art gallery prob-
lem that asks to find a minimum subset of the vertices in a graph such that
every vertex not in the subset has at least one member of the subset in its
neighborhood (vi&., related to the hitting set problem). This problem is also
NP-Complete [43]. The dominating set problem has been widely studied
in the wireless networking community given its applications to ad hoc rout-
ing [89] and efficient multicast [15]. The majority of the proposed distributed
algorithms for the dominating set problem, however, do not have bounds on
both runtime and solution quality. In the wireless networking community
much emphasis is placed on devising algorithms with a constant number of
communication rounds. Ruan, & al., propose a one-step greedy algorithm for
approximating a solution to the dominating set problem [90], however, the
performance ratio is a function of the degree distribution of the graph. Kuhn
and Wattenhofer provide a more general result, producing an algorithm that
has a variable approximation bound as a function of the number of commu-



Chapter 5.3: Art Gallery Problems 81

nication rounds executed. Kuhn and Wattenhofer’s approach, however, is
likewise tied to the degree distribution of the graph. Finally, Huang, & al.,
show that with a slightly higher message complexity a solution no worse than
12 times the cost of the optimal solution can be found [91]. This chapter
introduces an algorithm based on multidirectional constrained graph search
that exhibits a lower constant of approximation in a worst case linear—but
often logarithmic—number of communication rounds.

This section introduces a novel distributed version of a multiagent ap-
proximation algorithm based on the primal-dual schema for solving the dis-
tributed art gallery and dominating set problems (§5.3.1). We show that
this algorithm is correct and complete and bound its runtime with respect
to communication rounds (§5.3.2). Next, we show through empirical analysis
that the algorithm will produce solutions within a constant factor of optimal
with high probability (§5.3.3). We then show that some well known variants
of the problem can also be solved with the same algorithm and, under certain
reasonable assumptions about the distribution of edge weights, the algorithm
will produce a solution no worse than two times optimal (independent of the
topology of the problem) (§5.3.4).

5.3.1 Distributed Dominating Sets

This section defines the necessary formalism for the distributed dominating
set problem, which is equivalent to the original art gallery problem of finding
a minimum set of vertices from which the entire polygon is visible. This
formalism is later used to define our algorithm.

Given two vertices of a polygon u and v, u is said to be visible from v
if the line segment between them is contained within the polygon, & vice
versa. The exterior of the polygon is forbidden for visibility graph edges.
Given the vertices of a polygon, V , the Art Gallery Problem asks to find
a minimum subset of the vertices D ⊆ V such that for every v ∈ V there
is at least one d ∈ D that is visible. The visibility graph of a polygon is
constructed by adding an edge between all pairs of vertices that are visible to
each other. For example, see Figure 5.6b. The Art Gallery Problem therefore
reduces to finding a dominating set of the vertices in the polygon’s visibility
graph. Given a visibility graph G = 〈V,E〉, the object is to find a D ⊆ V
of minimum cardinality such that each v /∈ D has at least one d ∈ D in its
neighborhood. An example is given in Figure 5.6, with an optimal solution
depicted in Figure 5.6c.

The analysis of the dominating set problem can be simplified by repre-
senting it as a connectivity problem. Therefore, let us augment the visibility
graph with one special guard vertex di for each original vertex vi, as in Fig-
ure 5.7a. Next, add an edge from each vertex to its associated guard vertex
with a weight of one. The new overall set of edges is the original set of



82 Chapter 5.3: Art Gallery Problems

(a) (b) (c)

Figure 5.6: An art gallery, (a), with its associated visibility graph, (b), and
an optimal placement of guards, (c). Guard placement is represented by .

edges from the visibility graph unioned with the set of new guard edges.
All original edges from the visibility graph are given a weight of zero. Let
R = {v1, . . . , vn} be the set of original vertices in the visibility graph and
let T = {d1, . . . , dn} be the set of new special guard vertices with the new
overall set of vertices V = R∪T . Now the problem reduces to that of finding
a minimum weight forest that spans R having the property that the length
of the shortest path from any v ∈ R to a d ∈ T is no more than two edges.
We will hereafter refer to this forest as “the spanning forest”. Note, however,
that the spanning forest does not necessarily span all of T .

In this new connectivity representation, a vertex vi will be a part of D
(i.e., it will be chosen to become a guard) if the edge from it to its associated
guard vertex is a part of the final spanning forest: 〈vi, di〉 ∈ F =⇒ vi ∈ D.
Let f : 2V → {0, 1} be the function defining whether a connected component
S ⊆ V satisfies the requirement that each vertex is close to at least one guard.
f is defined such that f(S) = 1 if and only if there exists an original vertex in
S that is not within two edges distance of a guard in S: f(S) = 1 ⇐⇒ ∃u ∈
S ∩R ∀v ∈ S ∩ T : |u ; v| > 2. Note that f is not proper. A component for
which f(S) = 1 is said to be unguarded. The optimization problem on the
augmented graph can be captured as the following integer program:

minimize
∑
e∈E

w(e)xe

subject to:

x(δ(S)) ≥ f(S), ∀S ⊂ V : S 6= ∅
xe ∈ {0, 1}, ∀e ∈ E,

(ART-IP)

where each variable xe is an indicator as to whether the edge e is a member of
the final spanning forest, δ(S) is the set of edges having exactly one endpoint
in S, and x(F ) 7→

∑
e∈F xe. Therefore, any forest F ⊆ E will be a feasible

solution to the problem if f(S) = 0 for every connected component S of the
forest. Let (ART-LP) denote the linear programming relaxation of (ART-
IP) obtained by replacing the integrality restriction with xe ≥ 0. The dual



Chapter 5.3: Art Gallery Problems 83

of (ART-LP) is

maximize
∑
S⊂V

f(S)yS

subject to: ∑
S:e∈δ(S)

yS ≤ w(e), ∀e ∈ E

yS ≥ 0, ∀S ⊂ V : S 6= ∅.

(ART-D)

Again, an edge is tight if w(e) =
∑
S:e∈δ(S) yS . Let Z∗ART-LP be the cost of

the optimal solution to (ART-LP) and let Z∗ART-IP be the cost of the optimal
solution to (ART-IP). Needless to say that Z∗ART-LP ≤ Z∗ART-IP.

5.3.2 The Algorithm

The basic mechanism of the algorithm is that of constrained multidirectional
graph search. We start off with an empty forest; each vertex is a member
of its own connected component. Every round, each unguarded component
greedily chooses to add one of its cut edges in the visibility graph to the
forest, merging with the component on the other end of the edge. If the
new component becomes guarded as a result of the merger then the new
component stops actively growing. This has the effect of first finding a forest
that spans the original visibility graph; then each connected component in
the forest finds the minimum set of special vertices that is sufficient to be
guarded. When all components are guarded the algorithm terminates. A
technical sketch of the algorithm is given in Figure 5.7.

The remainder of this section provides the notation and mathematics
required to formally define and model the algorithm. This will later be used to
provide formal bounds on the runtime and performance of the algorithm, and
also to prove correctness and completeness. We make the same assumptions
on the communications network as in §5.2.4.

Let Ft be the partially constructed spanning forest at the beginning of
round t. Let Ct be the set of connected components in Ft. For sake of brevity
and simplicity, let µt : V → Ct be a function mapping vertices to their
associated connected component during round t; therefore, µt(v) 7→ Ci =⇒
v ∈ Ci(∈ Ct). A vertex that is incident to at least one edge in the cut of
its connected component is said to be in the fringe. Let gt : V → R be a
mapping of vertices to a real number during round t. These values represent
the amount of slack remaining in the dual variables associated with a vertex.

Let Jt : V × V → {0, 1} be a binary relation defining which edges will
become tight during round t. Each unguarded component will choose to
add the edge in its fringe that has minimal weight and dual variable slack.



84 Chapter 5.3: Art Gallery Problems

(a) Augmented graph. (b) Round 1. (c) Connectivity after
round 1.

(d) Round 2. (e) Connectivity after
round 2.

(f) Round 3.

(g) A guard is added. (h) Round 4. (i) A guard is added.

(j) Round 5. (k) A guard is added. (l) Round 6: Every vertex
is guarded, so the algorithm
terminates.

Figure 5.7: A sketch of the multidirectional constrained graph search algo-
rithm solving the Art Gallery constrained forest problem.



Chapter 5.3: Art Gallery Problems 85

Therefore, Jt(u, v) = 1 if and only if f(µt(u)) = 1 and

〈u, v〉 = arg min
〈i,j〉∈δ(µt(u))

w(〈i, j〉)− gt(i)− gt(j). (5.8)

Ties in the minimization are broken based upon the ordering of the edges.
Let J+ denote the transitive closure of J . Note that J does not commute:
J(u, v) 6=⇒ J(v, u). Also note that as long as there exists a feasible solution
to (ART-IP) then the minimization ensures that each unguarded connected
component must have exactly one edge in the fringe that becomes tight each
round: ∀C ∈ Ct : f(C) =

∑
〈u,v〉∈δ(C) Jt(u, v).

Ft is the partially constructed spanning forest during round t, initialized
to F0 = 〈V, ∅〉. The forest is updated each round with the set of all edges that
became tight during the round: Ft+1 = Ft ∪ {〈u, v〉 ∈ E : Jt(u, v)∨ Jt(v, u)}.

For a set S ⊆ V , let yS be the dual variable associated with S. Initially
all such variables are set to zero. Note that in actuality these variables need
not be made part of an implementation of the algorithm; they exist solely for
the purpose of proving properties of the algorithm [73]. These dual variables
are implicitly updated as follows:

yS ←

{
w(〈i,j〉)−gt(i)−gt(j)

1+Jt(j,i)
if ∃i ∈ S ∈ Ct, j /∈ S : Jt(i, j),

0 otherwise.
(5.9)

The g values are initialized such that ∀v ∈ V : g0(v) = 0. They are
updated each round such that

gt+1(v) = gt(v) + yµt(v). (5.10)

The value gt(v) can therefore be interpreted as the amount of slack remaining
in the dual variables during round t before an edge incident to vertex v
becomes tight.

Let τ be the number of rounds required for the algorithm to reach quies-
cence. Therefore, τ is the earliest round during which there are no unguarded
components:

τ = arg min
t∈N0

(∀C ∈ Ct : f(C) = 0) . (5.11)

The performance guarantees of the algorithm are proven in this section.
First, Lemmas 8 and 9 lead to Proposition 11 which implies that any solution
found by the algorithm is acyclic and thereby a forest, implying that it is
primal feasible. Proposition 12 states that under certain common conditions
the main loop (line 9 of Algorithm 6) will have a logarithmic number of
iterations. Finally, Claim 7 leads to Proposition 13 which states any solution
found by the algorithm is dual feasible.

Lemma 8. Any cycle in the intersection graph (q.v. footnote 1 on page 31)
of Ft+1 formed from Ct must consist solely of edges along the cuts between
unguarded components.



86 Chapter 5.3: Art Gallery Problems

Algorithm 6 The distributed art gallery/dominating set algorithm. Message
handlers are defined in Algorithm 7.

1: procedure Distributed-Art-Gallery(v)
Require: v is the vertex associated with the location of this agent.
Ensure: v will become a guard if 〈v, dv〉 ∈ F .

2: C ← ∅ /* The other fringe vertices in our component. */

3: N ← δ({v}) ∪ {〈v, dv〉} /* The neighborhood of v along with the special guard
vertex dv */

4: F ← ∅ /* The spanning forest of our component. */

5: for all i ∈ δ(C) ∪ {v} do
6: g(i)← 0
7: end for
8: I ← ∅
9: while F is unguarded do

10: Broadcast-Message(UpdateRequest) to all u ∈ N
11: Block until we have received and handled all Update messages from N .
12: Find an edge e = 〈v, u〉 ∈ N such that u /∈ C and ε = w(e) − g(v) − g(u) is

minimized.
13: Broadcast-Message(Potential〈ε〉) to all c ∈ C
14: Listen for all broadcast Potential messages from the fringe
15: if ε is the smallest in the fringe and ties are broken in our favor then
16: N ← N \ {u}
17: if u = dv then
18: Cm ← {u} /* v is to become a guard. */

19: else
20: Send-Message(Union〈e〉) to u
21: Wait for an Ack〈m,Cm〉 message from u
22: if m = Mutual then /* u also chose to make edge e tight */

23: ε← ε
2

24: else
25: if m = Not-Mutual then /* this means u is not yet guarded */

26: Block until we have received and handled an Adding〈ea, εa, Ca〉
message from u

27: end if
28: Cm ← Ca
29: end if
30: end if
31: Broadcast-Message(Adding〈e, ε, Cm〉) to all c ∈ C ∪ I
32: I ← ∅
33: C ← C ∪ Cm
34: g(v)← g(v) + ε
35: F ← F ∪ {e}
36: else
37: Block until we have received and handled an Adding message from another

fringe member
38: end if
39: end while
40: end procedure



Chapter 5.3: Art Gallery Problems 87

Algorithm 7 Message handlers for Algorithm 6.
1: procedure Handle-Update-Request-Message(UpdateRequest sent by u)
2: Send-Message(Update〈v, g(v)〉) to u
3: end procedure
4: procedure Handle-Update-Message(Update〈vu, gu〉 sent by u)
5: g(vu)← gu
6: end procedure
7: procedure Handle-Union-Message(Union〈eu〉 sent by u)
8: if e = eu then
9: Send-Message(Ack〈Mutual, C〉)

10: else if F is already guarded then
11: Send-Message(Ack〈Is-Guarded, ∅〉)
12: else
13: Send-Message(Ack〈Not-Mutual, ∅〉)
14: I ← I ∪ {u}
15: end if
16: end procedure
17: procedure Handle-Adding-Message(Adding〈ea, εa, Ca〉)
18: F ← F ∪ {ea}
19: g(v)← g(v) + εa
20: C ← C ∪ Ca
21: end procedure

Proof. Assume, on the contrary, that there exists a cycle containing an edge
that is incident to at least one guarded component. Let 〈u, v〉 be such an edge
and assume µt(v) is guarded. (5.8) implies that v’s connected component has
no outgoing edges,

∀i ∈ µt(v) : (¬∃j ∈ V : Jt(i, j)),

which contradicts the fact that 〈u, v〉 is in a cycle.

The potential cost of an edge is the fractional quantity associated with ε
on line 12 of Algorithm 6.

Lemma 9. Any cycle in the intersection graph of Ft+1 formed from Ct must
consist of edges of equal potential cost.

Proof. Let e1 = 〈u1, v1〉 be an edge in a cycle. (5.8) implies that all edges
in a cycle must be cuts between existing connected components. Therefore,
µt(u1) 6= µt(v1). Furthermore, there must be another edge in the cycle,
e2 = 〈u2, v2〉, such that µt(v2) = µt(u1). It must also be true that Jt(u1, v1) =
Jt(u2, v2) = J+

t (u1, v2) = 1. By Lemma 8 all components in the cycle are
unguarded. Therefore, applying (5.8) gives

w(e1)− gt(u1)− gt(v1) ≤ w(e2)− gt(u2)− gt(v2).

In general, this inequality will hold for the incoming and outgoing edges of



88 Chapter 5.3: Art Gallery Problems

any connected component in the cycle. Therefore, by transitivity,

w(e1)− gt(u1)− gt(v1) ≤ w(e2)− gt(u2)− gt(v2)

≤ w(e1)− gt(u1)− gt(v1),

implying that

w(e1)− gt(u1)− gt(v1) = w(e2)− gt(u2)− gt(v2).

Proposition 11. The intersection graph of Ft+1 formed from Ct is acyclic.

Proof. Assume, on the contrary, that there is a round t during which a cycle
of length ` is formed. Since the graph is simple, ` > 1. By Lemma 9, all of the
edges in the cycle must be of equal potential cost. Therefore, each connected
component will have had a tie between two fringe edges which must have
been broken using the edge ordering. Therefore, either ` = 1 or there are two
edges with the same unique identifier, both of which are contradictions.

Corollary 3. F0, . . . , Fτ are all acyclic.

Proof. Since F0 = 〈V, ∅〉, the base case is acyclic. Induction over Proposi-
tion 11 then proves the corollary.

It is easy to see that τ = the diameter of the visibility graph = O(n)
since every acyclic subgraph has O(n) edges and the algorithm adds at least
one edge per round. This upper bound can in fact be tightened for many
common cases, which we shall now demonstrate. Let Af (t) = A(t) be an
upper bound on the number of unguarded components at the beginning of
round t. Similarly, let Lf (t) = L(t) be an upper bound on the total number
of components at the beginning of round t. Clearly,

A(t) ≥ |{C ∈ Ct : f(C) = 1}|, and

L(t) ≥ |Ct| ≥ A(t).

In general, every unguarded component will union with another component
during each round. Regardless of whether such a component chooses to union
with a guarded or unguarded component, the total number of components
will decrease by one half the number of unguarded components. Therefore
L(t) = L(t−1)−A(t−1)/2. Now let us consider the extrema for the change in
the number of unguarded components. If all unguarded components choose to
union with other unguarded components and all unions are pairwise, then we
have A(t) = A(t−1)/2. On the other hand, if as many unguarded components
union with guarded components as possible, then A(t) ≤ min(A(t− 1), L(t−



Chapter 5.3: Art Gallery Problems 89

1)−A(t− 1)). Therefore, assuming pairwise unions, the general recurrences
for A(t) and L(t) are:

A(t) = max

(
A(t− 1)

2
,min

(
A(t− 1), L(t− 1)−A(t− 1)

))
, (5.12)

L(t) = L(t− 1)− A(t− 1)

2
.

The initial conditions for the recurrences are clearly

A(0) = |{C ∈ C0 : f(C) = 1}| = |R|,
L(0) = |C0| = |R|+ |T | = 2|R|.

Claim 6. A(t− 1)/2 will always dominate in the maximization in (5.12).

Validation of this claim will be given in the proof of the following propo-
sition.

Proposition 12. The algorithm will terminate after a logarithmic number
of rounds if all component unions are pairwise (i.e., iterations of the main
loop on line 9 of Algorithm 6): τ = O(log n).

Proof. This follows from the fact that the algorithm will terminate once the
number of unguarded components is zero:

∀t ∈ N0 : A(t) = 0 =⇒ t ≥ τ.

Therefore, the burden of this proof is to show that, the A(t) recurrence will
converge exponentially, implying that τ = O(log n).

If Claim 6 holds, then it is clear that the A(t) recurrence will converge
exponentially:

A(t) =
A(0)

2t
,

L(t) = 2|R| −
t∑
i=0

A(0)

2i
.

Let k = A(0)
2|R| and observe that k = 1

2 . Substituting 2k|R| for A(0) ensures

that the minimization in A(t) will always evaluate to L(t − 1) − A(t − 1)



90 Chapter 5.3: Art Gallery Problems

because

∀t ∈ N0 : A(t) ≥ L(t)−A(t).

2|R| k
2t
≥ 2|R|

(
1−

(
t∑
i=0

k

2i

)
− k

2t

)
2k

2t
≥ 1−

t∑
i=0

k

2i

k ≥ 2t

1 + 2t+1
,

which is true because 2t/(1 + 2t+1) is bounded above by 1
2 . Therefore, pro-

vided Claim 6 holds, (5.12) can be simplified to

A(t) = max

(
A(t− 1)

2
, L(t− 1)−A(t− 1)

)
.

Claim 6 obviously holds for the base case of t = 1 because A(0)/2 = 2k|R| is

bounded below by L(0) − A(0) = 2|R| − 2|R|
2 . Therefore, Claim 6 will hold

as long as
A(t)

2
≥ L(t)−A(t).

This equates to

k ≥ 2t+1

(
1−

(
t∑
i=0

k

2i

)
− k

2t

)

≥ 2× 4t

2t + 4t+1
,

which must be true because (2× 4t)/(2t + 4t+1) is bounded above by 1
2 .

Claim 7. Let t′ be the round during which an edge e = 〈u, v〉 is added to
the spanning forest. Then e will not be in the cut of any component in a
subsequent round: ∀t > t′, C ∈ Ct : e /∈ δ(C).

Proof. µt′+1(u) = µt′+1(v) = µt′(u) ∪ µt′(v). Therefore, in all rounds sub-
sequent to t′ both endpoints of e are in the same component and therefore
cannot be in the fringe.

Proposition 13. The vector y is a feasible solution to (ART-D) and has the
property ∑

e∈Fτ

w(e) ≤
∑
e∈Fτ

∑
S:e∈δ(S)

yS .



Chapter 5.3: Art Gallery Problems 91

Proof. The fact that y is a feasible solution to (ART-D) is a straightforward
result of the fact that y is initially zero and is updated according to (5.9).
Let t be the round during which an edge e = 〈u, v〉 ∈ Fτ was added to the
forest. From (5.10), note that(

gt(u) =

t−1∑
i=0

yµi(u)

)∧(
gt(v) =

t−1∑
i=0

yµi(v)

)
.

Furthermore, at the beginning of round t the potential for e is ε = w(e) −
gt(u)− gt(v). Once e is added to Ft, the dual variables yµt(u) and yµt(v) are
updated according to (5.9). Then there are three possible cases:

1. f(µt(u)) = f(µt(v)) = Jt(u, v) = Jt(v, u) = 1;

2. f(µt(u)) = f(µt(v)) = Jt(u, v) + Jt(v, u) = 1; or

3. f(µt(u)) + f(µt(v)) = 1.

In case 1,

yµt(u) + yµt(v) =
ε

1 + Jt(v, u)
+

ε

1 + Jt(u, v)
= ε,

implying that

w(e) =

t∑
i=0

(
yµi(u) + yµi(v)

)
. (5.13)

For case 2, assume without loss of generality that Jt(u, v) = 1 and Jt(v, u) =
0. For case 3, assume without loss of generality that f(µt(u)) = 1 and
f(µt(v)) = 1. Then for both of these cases note that

yµt(u) =
ε

1 + Jt(v, u)
= ε,

implying that

w(e) = yµt(u) +

t−1∑
i=0

(
yµi(u) + yµi(v)

)
. (5.14)

Claim 7 implies that the summations in (5.13) and (5.14) comprise all sets
that cut e, thus completing the proof.

5.3.3 Empirical Analysis

We have thus far proven that Algorithm 6 produces a feasible solution to
both (ART-IP) and (ART-D) in a linear—and often logarithmic—number of
rounds. It therefore only remains to analyze the quality of the solution.

A series of n-gons were randomly generated by connecting n uniformly
distributed vertices in the unit square of the Cartesian plane according to the



92 Chapter 5.3: Art Gallery Problems

Figure 5.8: Illustration of the “Two Peasants” method of point set polygo-
nization. The dashed line (“ ”) divides the unit square into half-spaces
(shaded “ ” and “ ”) through the two extremal vertices in the x dimen-
sion. Arrows represent the addition of edges to the polygon, the direction of
which indicate the order of their addition in the half-space.

folkloric “Two Peasants” method. This method works by dividing the plane
into half-spaces via the line that passes through the two vertices of extremal
value in the x dimension. The plane is then rotated such that the line between
the extremal vertices is parallel to the x-axis. In each half-space, the vertices
are connected to each other in order of increasing x value. This will result in
a simple polygon. The method is depicted in Figure 5.8. 32 random polygons
were created for each value of n. An agent was instantiated at each vertex
of each randomly generated polygon and the algorithm run. The optimal
dominating set was also calculated using an exhaustive sequential method.

Figure 5.9 presents the distribution of optimality as a function of polygon
size. Values on the y-axis represent the constant of approximation; lower
values are better, with 1.0 being the optimal solution. Boxes represent the
second and third quartiles of each distribution. The overall mean constant of
approximation is 3.13 with a standard deviation of 0.36. Therefore, we can
say with high probability that the algorithm will produce a solution with a
constant approximation bound regardless of the problem size.

5.3.4 Art Gallery Variants

In this section we will show that some variants of the art gallery problem can
be solved using the same approach as described above. In fact, some harder
problems can be approximated with a constant theoretical bound on solution
quality. For example, one popular variant is what is dubbed the “Treasury
Problem” [92], in which treasures dispersed in the polygon are what need to
be guarded. As another variant, one might need to minimize the distance
between a guard and that which he or she is guarding (e.g., due to a limited



Chapter 5.3: Art Gallery Problems 93

0

2

4

6

8

10

12

4 6 8 10 12 14 16 18 20 22 24

O
p

ti
m

a
li

ty

Number of Agents

Figure 5.9: Solution quality of the algorithm for art gallery problems of
various size. The x-axis is the size of the polygon (i.e., the number of agents)
and the y-axis is the constant of approximation. Each column is the distribu-
tion over 32 randomly generated polygons of a specific size. Boxes surround
the middle two quartiles. The mean of each distribution is depicted as “ ”.

view distance of the sensor, or due to the mobility of a robot). This variant is
in fact equivalent to the treasury problem in which each treasure has weighted
importance [93].

In order to model this variant, we need only to embed the edge weights
of the augmented graph into the proper metric space. As long as all of
the edges in the augmented graph are weighted in a metric space with a
normalized bijection in the range

[
1, 3

2

]
then we will show that the algorithm

as defined above will produce a solution that is no more than a factor of
2 − 2

|R| away from optimal. This can easily be done by parameterizing the

relative cost between covering a vertex/treasure and the distance between
a guard and a vertex/treasure. To prove this claim, we use a technique
of defining an invariant over the weights of the edges added to the forest
that can ultimately be bounded by the average vertex degree of the forest.
The basic intuition of our result is that the average degree of a vertex in a
forest of at most n vertices is at most 2 − 2

n . This technique is exactly the
same as that first used in a proof due to Goemans and Williamson in [73,
Theorem 3.6], in which they show that certain connectivity problems can be
sequentially 2-approximated in polynomial time. Our result in fact generalizes
that of Goemans and Williamson by proving that, with a slight change to the
potential function (and thereby the invariant), the approximation guarantee
can be maintained even if multiple edges are added per round (allowing for
parallelism/distribution).

Lemma 10 (Williamson, & al. [14, Theorem 3.6]).
Let H be the intersection graph of the final spanning forest Fτ formed from



94 Chapter 5.3: Art Gallery Problems

Ct. Remove all isolated vertices in H that correspond to components in Ct
that are guarded. Then no leaf in H corresponds to a guarded component.

Proof. This is a transcription of the proof, reproduced here for completeness
using our notation in the specific domain of art gallery problems. Assume the
contrary: Let v be a leaf, let Cv be its associated guarded component, let e be
the edge incident to v, and let C ⊆ V be the component of F which contains
Cv. Let N and C \N be the two components formed by removing edge e from
the edges of component C. Without loss of generality, say that Cv ⊆ N . The
set N \Cv is partitioned by some of the components of the current round; call
these C1, . . . , Ck. Since vertex v is a leaf, no edge in Fτ connects Cv to any
Ci. Thus by the construction of Fτ , ∀i ∈ {1, . . . , k} : Ci is guarded. Since Cv
is also guarded, it follows that N must be too. Clearly, if two components S
and B are both guarded and B ⊆ S, then the component S \ B must also
be guarded. Since we know that C is guarded then N \ C must as well, and
thus by the construction of Fτ , e /∈ Fτ , which is a contradiction.

Proposition 14. The cost of the final spanning forest Fτ is bounded above

by

(
2− 2

|R|

)
Z∗ART-IP.

Proof sketch. The basic intuition of our result is that the average degree of
a vertex in a forest of at most n vertices is at most 2 − 2

n . Cf. the proof of
Proposition 3 on page 34.

Assuming all messages can be both unicast and broadcast in a constant
number of messaging rounds then, by the same argument as in the proof
of 12, the main loop of the distributed algorithm on line 9 can run in a
logarithmic number of iterations and thereby will have a logarithmic number
of messaging rounds. If this assumption does not hold—for example, if ad hoc
routing is required—then the algorithm can be trivially extended to support
the Broadcast-Message function itself. To do this, the algorithm will use
the partially constructed spanning trees within each connected component
for multicast.

The most expensive operations in the distributed algorithm are (1) de-
termining the fringe edge with minimal potential; and (2) merging two con-
nected components once an edge between them becomes tight. Should ef-
ficient broadcast be unavailable, one way of implementing these operations
is to have broadcast messages convergecasted up the partially constructed
spanning tree in the component. This method was used to solve a similar
problem in [68]. The root of the tree (e.g., the vertex that was added the
earliest and is of highest unique identifier) can then perform the operation
and unicast the result back down to the relevant fringe member(s).



Chapter 5.4: Conclusion 95

5.4 Conclusion

This chapter has presented a number of examples of how the generalized
multidirectional graph search algorithm and framework can be applied to a
number of real world problems. Empirical results for these problems agree
with the theoretical bounds outlined in Chapters 3 and Chapter 4. Ulti-
mately, we have furthered the results of Panconesi [67] by showing that the
primal-dual optimization scheme proposed by Goemans and Williamson [73]
can be successfully distributed into an algorithm with not only bounds on
approximation, but also on runtime. This suggests that other connectivity
problems might yield to the same approach.





Chapter 6

Dynamic Agent
Organizations

The ultimate problem we are working toward solving is that of dynamic mul-
tiagent organization. Ideally, algorithms should not have to completely re-
optimize subsequent to every perturbation of the problem. Vertices can enter
and leave the graph at any time, and edges can be re-weighted or removed.
Superstabilizing distributed algorithms can start at any state and are guaran-
teed to eventually converge to a solution. Can multidirectional graph search
be extended such that it is superstabilizing? Another reasonable question
to ask is: What if the dynamic problem contains constraints that are not
trivially representable using proper functions? Both of these questions will
be answered in this chapter. In §6.1 we define extensions to multidirectional
graph search to allow for superstability subject to dynamic topological up-
dates. In §6.2, a new, distributed superstabilizing algorithm is introduced for
the problem of pseudotree construction.

6.1 Online Topology Updates

Given a graph G = 〈V,E〉 with a proper function f , let H = 〈Ṽ , Ẽ〉 be
a 2-optimal constrained forest discovered by multidirectional graph search
(Algorithm 2). Note that the nature of the algorithm ensures that if there
exists a feasible solution then, at the algorithm’s completion in round τ , H
will contain no active components. Now consider that during round τ + 1
a new vertex, v, is added to the input graph: G′ = 〈V ∪ {v}, E ∪ δ({v})〉.
Clearly, re-running Algorithm 2 from scratch on the new graph G′ will find
the new 2-optimal solution H ′. What if, however, the algorithm is simply
allowed to continue off from where it left in round τ? Is it possible to exploit

97



98 Chapter 6.1: Online Topology Updates

some of the computation from the previous execution of the algorithm on
G to find the new solution H ′ in fewer rounds? In certain cases this is
possible; the remainder of this section describes when and how, and gives a
superstabilizing extension to multidirectional graph search.

We will first identify under which circumstances the addition of v will
maintain dual feasibility. Let τ ′ > τ be the new round during which the con-
tinued execution of the algorithm (after the addition of v) reaches quiescence.
If we simply let the algorithm continue running as normal after the addition
of vertex v in a round subsequent to τ , we need to show that whatever was
a feasible solution before the addition of v remains a feasible solution after
the addition of v. In order for dual feasibility to persist, the dual constraints
must remain satisfied:

∀e ∈ E ∪ δ({v}) :
∑

S:e∈δ(S)

yS ≤ w(e).

Since we know that these constraints hold at round τ (before the addition of
v) it is therefore sufficient to only consider the sets S that cut edges incident
to v. By definition, the sum of the dual variables that cut an edge equals
the slack remaining on that edge. Therefore, the dual constraints will be
satisfied if the weight of each of v’s incident edges is greater than or equal to
the amount of slack in all of their incident component’s fringe edges. This
scenario is depicted in Figure 6.1: For each vertex u ∈ δ({v}) neighboring v,
it must be true that each fringe edge 〈i, j〉 ∈ δ(µτ (u)) that is in the cut of u’s
component has slack less than or equal to the weight of 〈u, v〉:

∀〈i, j〉 ∈ δ(µτ (u)) : w(〈u, v〉) ≥ g(i) + g(j).

This concept—which in effect defines under which circumstances Proposi-
tion 2 will remain true after the addition of a new edge—is formalized in the
following proposition.

Proposition 15. If the weights of all of v’s incident edges are greater than
or equal to the slack of all of their neighboring vertices’ fringe nodes, i.e.,

∀e = 〈v, u〉 ∈ δ({v}) :
(
∀〈i, j〉 ∈ δ(µτ (u)) : w(e) ≥ gτ (i) + gτ (j)

)
, (6.1)

then, after the algorithm has re-quiesced in round τ ′, the sum of the weights
of the edges in Hτ ′ is bounded above by the sum of the dual variables that cut
them, ∑

e∈Hτ′

w(e) ≤
∑
e∈Hτ′

∑
S:e∈δ(S)

yS , (6.2)

and Hτ ′ is a feasible solution to (D). In other words, Proposition 2 will still
hold.



Chapter 6.1: Online Topology Updates 99

v

u1

u2

..
.

u3

. . .

uk. . .

i1

j1

i2 j2

i3

j3

. . .

. .
.

. .
.

Figure 6.1: In order to maintain dual feasibility after the addition of v, for
each u incident to v is must be true that the weight of 〈u, v〉 is greater than
or equal to the slack of all of the other edges 〈i, j〉 in the cut of u’s component
(drawn in bold). The boundary of the cut with respect to each connected
component is depicted with a dashed line. Only the edges that are across
cuts are drawn.

Proof. We will first prove (6.2). If v is inactive, then none of v’s incident
edges will become tight and (6.2) will remain true. Therefore, let us consider
the case when v is active. There must be at least one edge incident to v that
will be added to H in order for v to become inactive. Assuming without loss
of generality that a feasible solution to the new problem exists, v must have
at least one new incident edge that is added to the problem: δ({v})∩H ′ 6= ∅.
We now use induction. As a base case, we must show that Proposition 2
holds after the first addition of an edge in δ({v}) during round τ + 1. To be
precise, we need to show that∑

e∈Hτ+1

w(e) ≤
∑

e∈Hτ+1

∑
S:e∈δ(S)

yS . (6.3)

From Proposition 2 we know that at the end of round τ the following must
hold: ∑

e∈Hτ

w(e) ≤
∑
e∈Hτ

∑
S:e∈δ(S)

yS .

To prove (6.3), it is therefore sufficient to show that the weight of a new edge
e ∈ δ({v}) will not break this invariant:

w(e) ≤
∑

S:e∈δ(S)

yS .



100 Chapter 6.1: Online Topology Updates

By line 11 of Algorithm 2,∑
S:e∈δ(S)

yS = yµτ+1(u) + yµτ+1(v)

=
ε

1 + Jτ+1(u, v)
+

ε

1 + Jτ+1(v, u)

=
ε

1 + Jτ+1(u, v)
+
ε

2

≥ ε

= w(e) + gτ+1(u) + gτ+1(v)

= w(e) + gτ+1(u),

because gτ+1(v) is initialized to zero and Jτ+1(u, v) ∈ {0, 1}. From the
definition of (3.3),

w(e) + gτ+1(u) = w(e) +

τ∑
i=0

yµi(u)

= w(e) +
∑

S:e∈δ(S\{v})

yS

≥ w(e),

which proves (6.3).
Now we shall show that Hτ+1 remains a feasible solution to (D). Regard-

less of whether or not v is a terminal, the inductive hypothesis maintains
that the dual constraints are satisfied by ensuring that the slack for all fringe
edges does not exceed the edge’s weight:

∀〈v, u〉 ∈ δ({v}) :∀e = 〈i, j〉 ∈ δ(µτ+1(u)) : w(e) ≥
∑

S:e∈δ(S)

yS ≥ gτ+1(i) + gτ+1(j)

 .

This provides dual feasibility and, thereby, proves the inductive base case.
The same logic as in the proof of Proposition 2 itself can then be used to
prove the inductive case.

Proposition 16. If Proposition 15 holds for H ′ and all edge additions during
the remaining τ ′ − τ rounds are weighted in the range

[
ω̃, 3

2 ω̃
]
, then H ′ will

also be 2-optimal.

Proof. Proposition 15 ensures that the weight of Hτ ′ is∑
e∈Hτ′

w(e) ≤
∑
e∈Hτ′

∑
S:e∈δ(S)

yS =
∑

S⊂V ∪{v}

|Hτ ′ ∩ δ(S)|yS .



Chapter 6.1: Online Topology Updates 101

The burden of this proof is therefore to show that, after the addition of v,
the new constrained forest Hτ ′ is 2-optimal:∑

S⊂V ∪{v}

|Hτ ′ ∩ δ(S)|yS ≤ 2
∑

S⊂V ∪{v}

yS . (6.4)

We shall use induction to show that (6.4) is invariant over the construction
of Hτ , Hτ+1 . . . , Hτ ′ . Given that Hτ is 2-optimal, it must be true that∑

S⊂V
yS |Hτ ∩ δ(S)| ≤ 2

∑
S⊂V

yS .

This proves the base case. The proof of the inductive case then follows the
same logic as that of the proof of Proposition 3.

The following corollary is a direct consequence of Propositions 15 and 16:

Corollary 4. A new vertex can be added to the problem at any time without
breaking the guarantee of 2-optimality as long as its incident edges’ weights
are greater than or equal to the slack of all of their neighboring vertices’ fringe
nodes.

Corollary 4 defines the circumstances in which new vertices may be dy-
namically added to the problem without having to restart the algorithm
from scratch. Extending this capability to general multidirectional graph
search (Algorithm 2) only requires a distributed means of determining if the
conditions of Proposition 15 are met—namely, if (6.1) is satisfied—and a pro-
tocol for handling race conditions (e.g., if two vertices are added at once). A
modified version of Algorithm 2 that allows for dynamic addition of vertices
is given in Algorithm 8.

Lines 6–22 of Algorithm 8 will only require worst-case O(n) messages and
linear local computation, because the number of fringe edges is always O(n).
Since the primary mechanism of Algorithm 8 is otherwise the same as in
the original multidirectional graph search algorithm, the remainder of the
computation will have similar efficiency bounds.

Note, however, line 12 of Algorithm 8; is it necessary to always have the
algorithm restart from scratch if the conditions of Corollary 4 are not met? By
recording the history of the search and performing backtracking, the answer
turns out to be “no”. In fact, we need only backtrack to the most recent
round in which the conditions of Corollary 4 are met. In some cases this will
require backtracking to round 0—in effect restarting the algorithm. More
often than not, though, backtracking to round 0 will not be necessary. The
added bookkeeping for this backtracking procedure is given in Algorithm 9.

Since the original algorithm is bounded by a linear number of communi-
cation rounds, τ = O(n), it stands that there can be at most O(n) backtracks



102 Chapter 6.1: Online Topology Updates

Algorithm 8 The dynamic multidirectional graph search algorithm. The
new code required for dynamic variable addition is emphasized; the original
code from Algorithm 2 is grayed out.

1: procedure Dynamic-Multidirectional-Graph-Search(T, v, w, δ)
Require: T is the set of terminals. v ∈ T is the terminal running this instance of the search

algorithm. w is a function that maps edges to their associated weight in the metric space[
ω̃, 3

2 ω̃
]
∈ Q. δ is a successor function such that δ(S) is the set of edges having exactly one

endpoint in S.
Ensure: H = 〈Ṽ , Ẽ〉 is the resulting forest.

2: Ṽ ← {v} /* The initial solution has just our vertex. . . */

3: Ẽ ← ∅ /* . . .and no edges */
4: F ← δ({v}) /* The fringe of our search, initialized to v’s incident edges */
5: ∀u ∈ V : g(v)← 0 /* Initialize the path-cost function, implicitly setting yS ← 0

for all S ⊂ V */
6: Broadcast δ({v}) to our neighbors.
7: Wait for acknowledgement from our neighbors’ components that it is okay to proceed.

/* e.g., using Paxos [94] */
8: valid← True
9: for all 〈u, v〉 ∈ δ({v}) do

10: Fu ← δ(µ(u)) /* listen for and/or request the fringe edges of u’s component */
11: if ∃〈i, j〉 ∈ Fu : g(i)+g(j) > w(〈u, v〉) then /* Check if the conditions of Corollary 4

are met */
12: valid ← False /* v cannot be added unless the algorithm is restarted from

scratch */
13: end if
14: end for
15: for all u ∈ V that are neighboring v do
16: if valid then
17: Acknowledge receipt of Fu.
18: else
19: Tell u that the algorithm needs to be restarted.
20: Dynamic-Multidirectional-Graph-Search(T, v, w, δ) /* restart our instance of the

algorithm */
21: end if
22: end for
23: while (Ṽ ∩ T 6= T ) ∧ (F 6= ∅) do /* while H does not contain all terminals and the

fringe is not empty */
24: while there are pending requests for our fringe edges do /* from line 10 */
25: Send Fv = {〈i, j, g(i), g(j)〉 : 〈i, j〉 ∈ F} to the requesting agent u.
26: Wait for an acknowledgement from u.
27: end while
28: Find an edge in e = 〈v, u〉 ∈ F such that ε = w(e)− g(u)− g(v) is minimized.
29: if u either is being or already was expanded by another search then
30: Union Ṽ , Ẽ, F , and g with the respective data structures of the search that

already expanded u and then merge our execution with that search.
31: if The other search also expanded the edge 〈v, u〉 this round then
32: ε← ε

2
33: end if
34: end if
35: for all k ∈ Ṽ : k is incident to an edge in the fringe do
36: g(k)← g(k) + ε /* Implicitly set yṼ ← yṼ + ε */
37: end for
38: F ← (F \ {e}) ∪ δ({u}) /* Remove e and add the edges incident to u */

39: Ṽ ← Ṽ ∪ {u}
40: Ẽ ← Ẽ ∪ {e}
41: end while
42: end procedure



Chapter 6.1: Online Topology Updates 103

Algorithm 9 The dynamic multidirectional graph search algorithm with
backtracking. The new code required for backtracking is emphasized; the
original code from Algorithm 8 is grayed out.

1: procedure Dynamic-Multidirectional-Graph-Search-Backtracking(T, v, w, δ)
Require: T is the set of terminals. v ∈ T is the terminal running this instance of the search

algorithm. w is a function that maps edges to their associated weight in the metric space[
ω̃, 3

2 ω̃
]
∈ Q. δ is a successor function such that δ(S) is the set of edges having exactly one

endpoint in S.
2–14: Lines 2–14 are unchanged from Algorithm 8.

15: for all u ∈ V that are neighboring v do
16: if valid then
17: Acknowledge receipt of Fu.
18: else
19: Tell u that the algorithm needs to be restarted to backtrack.
20: Dynamic-Multidirectional-Graph-Search(T, v, w, δ) /* restart our instance of the

algorithm */
21: end if
22: end for
23: A = {〈Ṽ , Ẽ, F, g, null, null, null, null, null〉} /* a stack for the history of the algorithm

*/
24: while (Ṽ ∩ T 6= T ) ∧ (F 6= ∅) do /* while H does not contain all terminals and the

fringe is not empty */
25: while there are pending requests for our fringe edges do /* from line 10 */
26: Send Fv = {〈i, j, g(i), g(j)〉 : 〈i, j〉 ∈ F} to the requesting agent u.
27: Wait for an acknowledgement from u.
28: if u tells us to backtrack then
29: 〈Ṽ , Ẽ, F, g, v2, Ṽ2, Ẽ2, F2, g2〉 ← Stack-Pop(A)
30: if v2 6= null then
31: Split our search with agent v2, giving it the state Ṽ2, Ẽ2, F2, g2.
32: end if
33: end if
34: end while
35: Find an edge in e = 〈v, u〉 ∈ F such that ε = w(e)− g(u)− g(v) is minimized.
36: if u either is being or already was expanded by another search then
37: Stack-Push(A, 〈Ṽ , Ẽ, F, g, u, Ṽu, Ẽu, Fu, gu〉)
38: Union Ṽ , Ẽ, F , and g with the respective data structures of the search that

already expanded u and then merge our execution with that search.
39: if The other search also expanded the edge 〈v, u〉 this round then
40: ε← ε

2
41: end if
42: end if
43: for all k ∈ Ṽ : k is incident to an edge in the fringe do
44: g(k)← g(k) + ε /* Implicitly set yṼ ← yṼ + ε */
45: end for
46: F ← (F \ {e}) ∪ δ({u}) /* Remove e and add the edges incident to u */

47: Ṽ ← Ṽ ∪ {u}
48: Ẽ ← Ẽ ∪ {e}
49: end while
50: end procedure



104 Chapter 6.2: Pseudotree Construction

for the addition of a single new vertex. Since each backtrack only incurs a
constant number of extra messaging rounds, Algorithm 9 will have the same
asymptotic runtime bounds as the original algorithm. Furthermore, the only
new data structure employed in the algorithm is the stack A. The size of
each element in the stack is O(|V |2) and there are at most τ elements in the
stack at any time. Therefore, the additional memory overhead of the new
algorithm is still polynomial: |A| = O(τ |V |2) = O(n3).

With the backtracking technique of Algorithm 9, we also gain the ability
to delete vertices and update edge weights. To see this, we will first prove a
rather intuitive proposition.

Proposition 17. As long as a feasible solution still exists after its deletion,
any vertex that does not have any incident edges in the constrained forest can
be deleted from the problem while maintaining 2-optimality.

Proof. Let v be the node that is to be deleted. Since the conditions of the
proposition require that a feasible solution still exists after the removal of
v, we only need to consider how v’s deletion affects 2-optimality (Propo-
sition 16). Since none of v’s incident edges are in the constrained forest,∑
e∈Hτ+1

w(e) remains unchanged after the removal of v. Therefore, the in-
variant used to prove 2-optimality in Proposition 16 remains unchanged, and
the final solution must also be 2-optimal.

By this property, we need only backtrack to the most recent round during
which v had no incident edges in the constrained forest, at which point it can
be safely removed. Therefore, updating edges can simply be implemented
by removing all incident vertices, adding/removing/updating the edges, and
re-adding the affected vertices.

In this section we have identified the sufficient conditions under which
new vertices may be added/deleted and edges modified in an existing con-
strained forest. Algorithm 8 implements these processes, with no affect to the
asymptotic efficiency bounds of the original multidirectional graph search al-
gorithm. Furthermore, if the conditions for these processes to take place are
not met, we have created a backtracking mechanism by which any such dy-
namic modification to the constrained forest can occur. The backtracking
mechanism is given in Algorithm 9, and only increases the memory overhead
of the algorithm polynomially.

6.2 Pseudotree Construction

A very reasonable question to ask is: What if a constrained forest problem
contains constraints that are not representable using proper functions or their
extensions? A prominent example of this is the pseudotree construction prob-
lem [29, 30]. Recall from §1.1.5 that a valid pseudotree inherently has the



Chapter 6.2: Pseudotree Construction 105

property that each pair of neighboring agents in the interaction graph are
either ancestors or descendants of each other in the hierarchy. This ensures
that no interaction will necessarily occur between agents in disjoint subtrees.
Therefore, interactions in disjoint subtrees may occur in parallel. The general
reason why this problem is not representable using a proper function is that
(1) the pseudotree is rooted, and (2) a global invariant must be maintained
over the ancestor/descendant relationships in the tree; this will be described
in detail below.

Given a graph of expected interaction between the agents, this section
introduces an algorithm, called Multiagent Organization with Bounded Edit
Distance (Mobed), for constructing and maintaining an organizational hi-
erarchy that is a valid pseudotree. It is shown that Mobed is correct and
that it outperforms alternative approaches by as much as 300% in terms of
edit distance between perturbations with little impact to computation and
privacy.

6.2.1 The Mobed Algorithm

Let G = 〈A,E〉 be a graph consisting of an ordered set of agents, A, and a set
of edges E. Each edge 〈ai, aj〉 ∈ E implies that agent ai will need to interact
with aj . We shall hereafter call this the interaction graph. Let N : A → 2A

be a function mapping agents to their (open1) neighborhood ; N(ai) returns
the set of all agents that share an edge with ai. In terms of the δ function
that has been used up until this point, N(ai) is equivalent to {aj ∈ A :
〈ai, aj〉 ∈ δ({ai})}. A multiagent hierarchy for a given graph G = 〈A,E〉 is
an unordered, labeled, rooted tree denoted by the tuple T = 〈A, π : A→ A〉,
where π is a function mapping agents to their parent in the tree. The inverse
of the parent function, π−1(ai), shall be used to denote the set of children of
agent ai. The notation “R+” shall be used to represent the transitive closure
of a binary relation R. Agent aj is said to be the ancestor of an agent ai
in a hierarchy if aj has the property (aj = π(ai))

+. Likewise, agent aj is a
descendant of ai if (aj ∈ π−1(ai))

+. For convenience—and at the expense
of a slight abuse of notation—let Ci be the set of ancestors of agent ai and
let Di be the set of descendants of agent ai. The depth of an agent in the
hierarchy is the number of edges in the shortest path from that agent to the
root (which also happens to be equal to the number of the agent’s ancestors:
|Ci|). A hierarchy is said to be valid if all neighboring pairs of agents in
the interaction graph are either ancestors or descendants of each other in the
hierarchy. Let ν : 2A×A → B be a validity testing function defined as:

ν(I) 7→ (∀〈ai, aj〉 ∈ I : ai ∈ (Cj ∪Dj)) . (6.5)

1A neighborhood is “closed” if it also contains ai.



106 Chapter 6.2: Pseudotree Construction

Given an interaction graph G = 〈A,E〉, a multiagent hierarchy T is therefore
valid for a given problem if ν(E) = True.

We assume that each agent ai knows the existence of all of its neighbors:
aj ∈ N(ai), however, it may not know of all of the other agents in the
network. Each agent that has already been placed in the hierarchy only
knows its parents, children, and interaction graph neighbors. Agents also
know the relative location of interaction graph neighbors (i.e., ancestor or
descendant).

As Mobed applies to DCR, it should be noted that our notion of an
interaction graph can be equated to DCR’s notion of a constraint graph.
In this sense, though, our formalization is then in the context of constraint
graphs of agents as opposed to constraint graphs of variables (the latter of
which is the norm for DCR). This presentation was chosen for sake of both
brevity and accessibility. Nothing precludes this algorithm from being applied
to constraint graphs with multiple variables per agent; in such a case the work
herein may be read such that “agents” are instead “variables.”

With these assumptions in mind, there are a number of challenges in
devising a DynDisMHG algorithm (complicated by the fact that there is no
central server and agents act asynchronously in an asynchronous network):

1. To what extent can privacy be maintained?

2. What if a new agent has at least two neighbors in disjoint hierarchies?

3. How are multiple, concurrent requests for addition and removal han-
dled?

4. How is the hierarchy initialized?

5. To what extent can the perturbation of an existing hierarchy be mini-
mized subsequent to the addition or removal of an agent?

The remainder section introduces Mobed: an algorithm that addresses all of
these challenges.

The Insertion Point

Given an existing hierarchy and a new agent, the first problem is to determine
where in the hierarchy that agent should be added such that the hierarchy
remains valid. We shall now propose and prove a series of lemmas that define
such an insertion point. We first define (6.6) that tests whether or not a
given agent already in the hierarchy is a valid insertion point. In Lemmas 11
and 12 we prove, respectively, that such an insertion point must exist and
that it must be unique. In Lemmas 13 and 14 we prove that the new agent
can be inserted either as the parent or child of the insertion point.



Chapter 6.2: Pseudotree Construction 107

Let η : A × 2A → B be a function that identifies the valid points in a
hierarchy in which a new agent can be added. The η function is defined such
that η(ai; I) is True if and only if all of the following are true:

• ai is an ancestor or descendant of all agents in I − {ai};

• ai either has no descendants in I or ai has more than one child whose
subtree has agents in I; and

• none of ai’s ancestors are insertion points for I.

η(ai; I) = v
(
{ai} × (I \ {ai})

)
∧

(
Di ∩ I = ∅ ∨

∣∣∣{aj ∈ π−1(ai) : (Dj ∪ {aj}) ∩ I 6= ∅
}∣∣∣ > 1

)
∧
(
∀aj ∈ Ci : ¬η(aj ; I)

)
. (6.6)

We shall hereafter refer to an agent ai that satisfies η(ai; I) as an insertion
point for the set I.

If an existing hierarchy is valid, it occurs that there must exist an insertion
point for the neighborhood of each agent that is to be added. In fact, the
insertion point for each new agent must be unique. We will prove these two
properties in the following two lemmas.

Lemma 11. Given a valid hierarchy T = 〈A, π〉 and an agent ai /∈ A, if all
of ai’s neighbors are already in the hierarchy then there must exist an agent
in the hierarchy, a` that is a valid insertion point for ai:

N(ai) ⊆ A =⇒
(
∃a` ∈ A : η (a`;N(ai)) = True

)
. (6.7)

Proof. Let us assume, on the contrary, that N(ai) ⊆ A but there does not
exist an agent a` such that η(a`;N(ai)). This means that either ∀aj ∈ A :
N(ai) \ {aj} * Dj ∪ Cj ; every agent has exactly one child whose subtree
contains an agent in N(ai); or every agent has at least one ancestor that
is an insertion point for N(ai). The first case contradicts N(ai) ⊆ A. The
second case implies that the hierarchy T is cyclic (and therefore invalid) which
is a contradiction. The third case either means that a distinct a` must exist or
it means that the hierarchy T is cyclic, both of which are contradictions.

Lemma 12. The insertion point of a valid hierarchy must be unique.

Proof. Let us assume, on the contrary, that there are at least two agents in
A that satisfy the existential quantification of a` in (6.7); let us call two such
agents a1 and a2. Both η(a1;N(ai)) and η(a2;N(ai)) must be True, which



108 Chapter 6.2: Pseudotree Construction

implies that neither a1 nor a2 is an ancestor of the other, further implying
that a1 and a2 must be in disjoint subtrees. Since the hierarchy is valid it
must not be cyclic, and there must be some agent a3 that is the deepest
common ancestor of a1 and a2. Since a1 and a2 are both insertion points for
N(ai), all of the agents in N(ai) \ {a3} must be in C3, which by definition
of (6.6) means that η(a3;N(ai)) must be True, contradicting the fact that
both a1 and a2 are insertion points for N(ai).

Now that we have established that a unique insertion point must exist,
a new question is raised: In what way can the insertion point be used to
incorporate the new agent into the existing hierarchy? As we shall expose
in the following lemma, the new agent may always be inserted as the new
parent of the insertion point.

Lemma 13. Given a valid hierarchy T = 〈A, π〉, the addition of a new agent
ai /∈ A inserted between a` ∈ A and π(a`) will produce a valid new hierarchy,

T ′ = 〈A ∪ {ai}, (π \ {〈π(ai), ai〉}) ∪ {〈a`, ai〉, 〈π(ai), a`〉}〉 ,

if a` is a valid insertion point: η(a`;N(ai)).

Proof. This will clearly be true when a` is the root of the hierarchy, since
the addition of a new agent at the root of the hierarchy will always be valid
because the root is the ancestor of all other agents. For all other cases, note
that a` will be the only child of ai, thus ai will share all of a`’s previous
ancestors and descendants. Since a` was already a valid insertion point, ai
must also remain valid.

Let ad ∈ A be the deepest agent in the hierarchy that is either an ancestor
or descendant of all of ai’s interaction graph neighbors: ν({ad} ×N(ai)) 7→
True. Therefore, ai can always be validly added as the parent of ad or any of
ad’s ancestors. This leads to the relatively näıve algorithm of always adding a
new agent as the parent of its associated ad. While this technique will always
provide valid hierarchies, it will also always produce chains which is the worst
case in terms of parallelism. We therefore need some way imposing branches
in the tree. Under certain circumstances the new agent may be added as a
new leaf underneath the insertion point. The specifics of these circumstances
are expounded in the following lemma.

Lemma 14. Given a valid hierarchy T = 〈A, π〉, the addition of new agent
ai /∈ A as a child of a` ∈ A will produce a valid new hierarchy T ′ = 〈A ∪
{ai}, π∪{〈ai, a`〉}〉 if N(ai)∩D` = ∅ and a` is the insertion point for N(ai).

Proof. Assume, on the contrary, that the addition of ai as a child of a` will
produce an invalid hierarchy. By definition in (6.5), this means that there is at
least one pair of neighboring agents that are neither ancestors nor descendants



Chapter 6.2: Pseudotree Construction 109

of each other. Since the original hierarchy T was valid, we know that such
a pair of agents must be in {ai} × N(ai). Since ν({a`} × N(ai)) is true,
we know that all of ai’s interaction graph neighbors are either ancestors or
descendants of a`. Since ai is added as a child of a` and therefore shares all of
a`’s ancestors, it must be true that ∃aj ∈ N(ai) : aj ∈ D`, which contradicts
N(ai) ∩D` = ∅.

General Principles

Based upon the results of the previous section, Mobed adds an agent ai to
an existing hierarchy by the following procedure:

1: find a valid insertion point a` /* one must exist according to Lemmas 11
and 12 */

2: if D` ∩N(ai) = ∅ then /* Lemma 14 */

3: π(ai)← a` /* add ai as a new leaf under a` */
4: else /* Lemma 13 */

5: π(ai)← π(a`) /* insert ai between a`’s parent. . . */
6: π(a`)← ai /* . . .and a` */
7: end if

Determining a` (step one in the procedure) can be performed by recursively
passing messages up the tree starting from all agents in N(ai). Without loss
of generality, let us assume that all agents in N(ai) are already present in
the same hierarchy; this assures that there must be some agent aj that will
eventually receive |N(ai)| messages from its children. Then,

1: while aj received exactly one message regarding the addition of ai do
2: aj ← the child from which aj received the message
3: end while
4: a` ← aj

Using this method it is trivial to check whether D` ∩N(ai) = ∅ (step two in
the procedure): If a` did not receive any messages from its children then we
know D` ∩ N(ai) = ∅ is true. Figure 6.2 provides an example execution of
this algorithm.

Merging Hierarchies

We shall now consider the case when a new agent’s neighborhood contains
agents in disjoint hierarchies. This may happen if ai is an articulation point
of the interaction graph. The approach for this case is simply to add ai as
the new parent of the roots of T1 and T2. The problem, however, is that no
agent in N(ai) necessarily knows that they are in disjoint hierarchies and the
addition process as described above will deadlock.

The solution is as follows: Whenever a root of a hierarchy (e.g., a1 and a3)
receives an addition request regarding a new agent ai—regardless of whether



110 Chapter 6.2: Pseudotree Construction

a1

a2

a3

a4

a5

Add Me

Add Me

(a)

a1

a2

a3

a4

a5

A
d
d
in

g
a
5

(b)

a1

a2

a3

a4

a5

A
r
e

y
o
u

d
e
e
p
e
s
t
?

(c)

a1

a2

a3

a4

a5

I
am
a
`

ch
ild

(d)

Figure 6.2: An execution of the algorithm for addition of a agent a5 to
an existing hierarchy. Solid edges represent edges in the existing hierarchy.
Dashed edges represent message passing. In (a), a5 initiates its addition to
the existing hierarchy by sending messages to all aj ∈ N(a5). In (b), a4

forwards the message on to its parent, a2. In (d), a2 receives two messages
regarding the addition of a5 and |N(a5)| = 2, however, a2 has a single child,
so a2 asks that child if it is deepest. Finally, in (d), a4 did not receive any
messages from its children (D4 ∩N(a5) = ∅), so a2 adds a5 as a child.



Chapter 6.2: Pseudotree Construction 111

that addition request was sent directly to the root or whether it was propa-
gated up the hierarchy—and that root has received fewer than |N(ai)| such
addition requests, then that root will additionally send a Root message to ai
stating that it is the root of a hierarchy. If ai ever receives |N(ai)| such mes-
sages then ai will become the new parent of all agents from whom it received
the messages.

Preventing Race Conditions

The algorithm as it is presented above will work correctly if there is exactly
one agent being added at a time. Due to the possibility of arbitrary message
latency, there is a chance that concurrent additions could result in inconsistent
modifications to the hierarchy among the agents. To address this we introduce
a concept of engaged blocks of the hierarchy. When an agent aj receives an
add request regarding a new agent ai, then aj goes into engaged mode and
proceeds as normal. If aj is already engaged, however, it will immediately
reply to ai with an AlreadyEngaged message. Such an error condition implies
that another agent in the subtree rooted at aj (or an agent on the path from
aj to the root) is in the process of either being added or removed; we shall
call this agent ak. Agent aj will also send an AlreadyEngaged message to ak.
This process is depicted in Figure 6.3. These messages contain a field stating
whether k > i. If an agent ever receives such a message it will inform all agents
in its neighborhood that it is canceling its addition. If the agent’s identifier
is lower priority than the other sent in the AlreadyEngaged message then
that agent will perform an exponential backoff before restarting its addition.
Otherwise, the agent will only sleep for a constant time period. Once the
algorithm is complete, all agents that received an addition message regarding
ai become unengaged.

Initial Generation

The special cases addressed in the previous sections are sufficient to generate
and maintain hierarchies as long as a hierarchy already exists. How should
the initial hierarchy be generated? Which agent should become the first root?

The solution is to construct the initial hierarchy semi-synchronously: an
agent will not attempt addition of itself to a hierarchy until all of its higher-
priority neighbors are already members of a valid hierarchy. A new agent to be
added to the hierarchy, ai, will send an AddMe to all aj ∈ N(ai), as described
above, however, ai will send them one-by-one in order of decreasing priority of
j. After each AddMe is sent, ai will block until receipt of a reply from aj before
proceeding to the next, lower-priority neighbor. The neighbor’s reply can be
one of three possibilities: an AlreadyEngaged message as described in §6.2.1,
a NoTree message (meaning the neighbor has not yet been added to a tree),
or a AdditionStarted message (meaning that the neighbor does have a tree



112 Chapter 6.2: Pseudotree Construction

a2

a1 a3

a4a5 a6
Add Me

A
d
d

M
e

Add Me

Add Me

(a)

a2

a1 a3

a4a5 a6

A
d
d
in

g
a
5

A
d
d
in

g
a
6

(b)

a2

a1 a3

a4a5 a6

A
lr

e
a
d
y

E
n
g
a
g
e
d

fo
r
a
6
! A

lr
e
a
d
y

E
n
g
a
g
e
d

fo
r
a
5
!

(c)

Figure 6.3: Handling of race conditions using engaged blocks. In (a), agents
a5 and a6 concurrently initiate their addition into existing hierarchies; a1

becomes engaged for a6 and a3 becomes engaged for a5. In (b), agents a2

and a4 proceed with the algorithm as normal, propagating the add requests
to their parents. Finally, in (c) agents a1 and a3 both reply with errors which
are propagated back to a5 and a6 who perform a backoff before attempting to
add themselves again. Without the use of engaged blocks, note that agents a5

and a6 will compete to be the root of the tree (i.e., the parent of a1 and a3),
possibly causing an inconsistency in the nodes’ perception of the topology.



Chapter 6.2: Pseudotree Construction 113

and has started the addition process for ai as described above). If ai receives a
NoTree message from aj and j > i then ai will send a CancelSearch message
to all ak ∈ N(ai) where k > j and ai will block until it receives an AddRequest

message from another agent. If, on the other hand, a NoTree message is
received from an aj where j < i then it is ignored. The addition will then
proceed as in §6.2.1. Pseudocode for the entire algorithm—implementing the
constructs in §6.2.1–6.2.1—is given in Algorithm 10.

Changes to Constraints and Agent Removal

Changes to constraints can be handled by removing and re-adding all affected
agents. Removal of an agent ai can be accomplished by making ai, π(ai), and
all aj ∈ π−1(ai) engaged. All of the children are then made the children of
π(ai) and ai is removed. The hierarchy will remain valid.

6.2.2 Analysis

This section analyzes—both theoretically and empirically—the performance
of Mobed. For the empirical analysis, a series of random, connected graphs
were randomly generated from a uniform distribution with varying numbers
of vertices and edge densities2. A set of 100 random graphs were generated
for each pair of number of vertices and edge density, for each of which both
DFS and Mobed were run to generate a valid hierarchy. A new vertex was
then randomly added in such a way as to maintain the given edge density,
and both DFS and Mobed were then re-run to produce a new valid hierarchy.
Various metrics including the average number of rounds of computation (i.e.,
the length of the longest causal chain of synchronous messages required for
the algorithm to reach quiescence) and the edit distance between hierarchy
perturbations were recorded.

Computational Complexity

Let us consider the worst-case computational complexity of adding a new
agent ai to an existing valid hierarchy T = 〈AT , π〉. We assume that N(ai) ⊆
AT and there are no other agents attempting to be concurrently added. The
agent will first send one message to each neighbor in N(ai). Each aj ∈ N(ai)
will then forward the message up the tree. In the worst case in terms of
synchrony, each of the |N(ai)| messages will have to traverse up the tree to
the root, followed by the root propagating a single message back down to
the insertion point. The addition of a single agent therefore requires worst
case O(|N(ai)|dT ) rounds, where dT is the depth of T . In the worst case in

2Edge density, ranging in [0, 1], is the percentage of possible edges that exist in the
graph. A density of 0.0 means that the graph has no edges while a density of 1.0 means
that the graph is complete.



114 Chapter 6.2: Pseudotree Construction

Algorithm 10 Mobed’s distributed addition of a new agent, regardless of
whether or not any of the agent’s neighbors are already in hierarchies or
whether those hierarchies are disjoint. Message handlers are given in Algo-
rithm 11.
Note that the t argument is used as a type of logical clock to avoid processing messages that
have expired. If a message is ever received with a t value that is lower than any other message
that has been received from the sender then the message is discarded.

1: procedure Add-Agent(ai, t = 0)
Require: ai is the agent to be added. t is a counter for this addition attempt, initially set to

zero.
2: H ← N(ai)
3: for all aj ∈ N(ai) in order of descending j do
4: Send-Message(HasTree?) to aj
5: wait for a reply from aj
6: if the reply is AlreadyEngaged then
7: handle as described in §6.2.1.
8: else if the reply is NoTree then
9: if j > i then

10: send a CancelSearch(t) message to all am ∈ N(ai) where am > aj .
11: wait to receive an AddRequest message
12: return Add-Agent(ai, t+ 1)
13: else
14: H ← H \ {aj}
15: end if
16: else if the reply is a success then
17: do nothing
18: end if
19: end for
20: for all aj ∈ H do
21: Send-Message(AddMe, ai, |H|, t) to aj
22: end for
23: R← ∅ /* R is a set and therefore does not allow duplicates */
24: while |R| < |H| do
25: if the next message is a Root message from aj then
26: R← R ∪ {aj}
27: if |R| = |H| then /* |N(ai)| contains agents in disjoint hierarchies */
28: for all ar ∈ R do
29: π(ar)← ar /* Become the new parent of ar */
30: Tell ar that we are its new parent and that it can become unengaged.
31: end for
32: end if
33: else if the next message is Added(p, c) from aj then
34: π(ai)← p /* our new parent is p */
35: π(c)← ai /* our new child is c */
36: R← H
37: end if
38: end while
39: send an AddRequest to all lower-priority agents to whom ai has ever sent a NoTree

message.
40: end procedure



Chapter 6.2: Pseudotree Construction 115

Algorithm 11 Message handlers for agent addition.
1: procedure Handle-AddMe(an, q, t) sent from aj
Require: an is the agent requesting to be added and ai is the agent that received (and is

processing) the message. m : V → N, r : V → 2π
−1(ai), and s : V → B are all maps

retained in memory. m maps variables to an integer, r maps variables to the power set of
ai’s children, and s maps variables to a boolean. If a key does not exist in s then its value is
taken to be False. av is the agent for whom ai is currently engaged, or ∅ if ai is unengaged.

2: if ai is not yet in the hierarchy then
3: Send-Message(NoTree, t) to an
4: return
5: else if av 6= ∅ 6= an then
6: Send-Message(AlreadyEngaged, v > n, t) to an and av
7: av ← ∅
8: Clear all of the maps in memory and tell aj to cancel its search, forwarding the

message to all agents in the current engaged block.
9: return

10: else
11: av ← an /* make ai engaged for an */
12: end if
13: if aj = an then /* aj is the variable requesting to be added */
14: m(an)← 1, r(an)← ∅, and s(an)←True

15: else if aj ∈ π−1(ai) then /* aj is one of our children */
16: m(an)← m(an) + 1
17: r(an)← r(an) ∪ {aj}
18: end if
19: if m(an) = q then /* ai satisfies (6.5) for N(an) */
20: if |r(an)| = 1 then /* ai is not the deepest */
21: q′ ← q
22: if s(an) 7→True then /* ai was originally sent a message from an (meaning

ai ∈ N(an)) */
23: q′ ← q′ − 1
24: end if
25: ak ← the single variable in r(an)
26: Send-Message(AddMe, an, q

′, t) to ak
27: av ← ∅
28: remove m(an), r(an), and s(an) from memory
29: else /* ai is the deepest vertex satisfying (6.5) */
30: if r(an) 6= ∅ then /* we have at least one descendant that is inN(an) (Lemma 13)

*/
31: π(an)← π(ai)
32: π(ai)← an
33: Send-Message(Added, π(an), ai) to an
34: else /* Lemma 14 */
35: π(an)← ai
36: Send-Message(Added, ai, ∅) to an
37: end if
38: av ← ∅
39: Tell all of the agents in r(an) that the search is over and clear all of the maps in

memory.
40: end if
41: else if our vertex ai is not the root of the pseudotree then
42: Send-Message(AddMe, an, q, t) to π(ai) /* Forward the message to our parent */
43: else /* This may occur if there are two or more variables in N(an) from disjoint

hierarchies */
44: Send-Message(Root, ai, t) to an
45: end if
46: end procedure



116 Chapter 6.2: Pseudotree Construction

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g
e

#
of

R
ou

n
d

s

# Agents

Density 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 6.4: Average number of rounds for Mobed to reach quiescence for a
single agent addition.

terms of existing hierarchy topology, T will be a chain and the worst case
number of rounds for a single insertion is O(|N(ai)||AT |). Construction of
a hierarchy from scratch for a worst-case fully-connected interaction graph
therefore requires

O

 |A|∑
i=1

i· |A|

 = O

(
|A|(|A|+ 1)2

2
− |A|(|A|+ 1)

2

)
= O

(
|A|3

)
rounds. The best-case runtime, however, is O(|N(ai)|), which in the real
world will often be quite small. Therefore, the runtime in terms of number
of rounds will always be polynomial and—if N(ai) is bounded—individual
additions will run in amortized linear time. This bound is supported by the
empirical results (Figure 6.4).

Edit Distance

The edit distance between two hierarchies, T1 = 〈A1, π1〉 and T2 = 〈A2, π2〉,
is defined as the minimum number of child-parent relationships that must be



Chapter 6.2: Pseudotree Construction 117

a1

a2 a3 aj. . .

ai

Add Me

Add
M

e

Add Me

Add Me

Add Me

Figure 6.5: Worst case configuration for DFS edit distance: The existing
hierarchy T = 〈{a1, a2, . . . , aj}, π〉 consists of a root, a1, with j − 1 children,
and the agent being added, ai, is connected to all a1, a2, . . . , aj in T .

reassigned, added, or deleted in order for the two trees to become isomorphic:

Edit-Distance(A1, A2) =∣∣∣{〈ai, π1(ai)〉 : ai ∈ A1

}
	
{
〈aj , π2(aj)〉 : aj ∈ A2

}∣∣∣ .
Ideally, after a single addition of an agent the edit distance between the
original hierarchy and the resulting hierarchy will be minimized. The worst
case edit distance for DFS will occur whenever the existing hierarchy T =
〈AT , π〉 consists of a root with |AT | − 1 children and the agent being added,
ai /∈ AT , has the property N(ai) = AT (cf. Figure 6.5). In this case |A| edits
may occur. In contrast, Mobed bounds the number of edits for each agent
addition at two.

During our empirical analysis, edit distance according to the metric for-
malized above was noted for both DFS and Mobed between the initial and
post-vertex-addition hierarchies. Figure 6.6 gives the percentage difference
between the edit distance of DFS and Mobed; positive percentages mean
that DFS had a worse edit distance. DFS performed worse for sparse graphs
(density ≤ 0.5). Although DFS performed better on dense graphs, it was
only ever one edit better. We believe that Mobed performs better on sparse
graphs because in such instances Mobed is more likely to be able to add the
new vertex as a leaf in the tree, which is the best case for both parallelism
and edit distance.

Our definition of edit distance is quite favorable to DFS; in some domains
a better metric may be the number of ancestor-descendant relationships that
are modified as a result of each change to the interaction graph. Such pertur-
bations in the context of DCR might cause large portions of the previously
explored search space to be expanded again. With this stricter metric, Mobed
still has a bounded edit distance of two, while DFS may perform much worse.



118 Chapter 6.2: Pseudotree Construction

-50

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100

%
A

v
er

ag
e

E
d

it
D

is
ta

n
ce

# Agents
Density 0.1

0.2
0.3

0.4
0.5
0.6

0.7
0.8
0.9

Figure 6.6: Comparison of the edit distance of DFS to Mobed. The y-axis
is the percentage difference between DFS and Mobed; positive values imply
DFS performed worse.



Chapter 6.3: Conclusions 119

6.3 Conclusions

In this chapter we have tried to show how dynamic changes to the prob-
lem can be handled. First, we showed how multidirectional graph search
can be extended to be a superstabilizing algorithm capable of handling dy-
namic changes consistent with proper functions. We were able to extend the
algorithm such that it can handle dynamic modification with little or no addi-
tional overhead. This was accomplished by identifying a set of circumstances
under which the algorithm execution could be continued after the addition
or removal of a vertex. If such conditions are not met, a new backtracking
mechanism is added that allows for the algorithm to revert to the most re-
cent round in which the conditions are met. In doing so, the multidirectional
graph search algorithm becomes superstabilizing; the algorithm is guaran-
teed to converge back to a valid state after any dynamic perturbation of the
problem.

In the second half of the chapter, we investigated topologies which do
not obey proper functions. We devised a new algorithm, Mobed, for solv-
ing a subset of such problems that take the form of the dynamic pseudotree
construction problem. Mobed constructs and maintains multiagent hierar-
chies with bounded edit distance between hierarchy perturbations. Mobed
was compared to the only other viable solution to the DynDisMHG problem:
distributed DFS. It was shown that Mobed will always reach quiescence in
a linear number of rounds for each agent addition with respect to the total
number of agents, but under certain circumstances it can theoretically run
in constant time. Re-running DFS after such a perturbation would also re-
quire a linear number of rounds, but may have arbitrarily bad edit distance.
The edit distance of Mobed is always bounded at two edits, which is very
low. For sparse graphs (density less than 0.5) Mobed has at least as good an
edit distance as DFS, and exhibited as much as a 300% benefit. For those
instances when Mobed exhibited a higher edit distance than DFS (i.e., when
the graph is dense) its edit distance was no more than one edit worse. Pri-
vacy is also maintained in Mobed insofar as agents only ever have knowledge
of their interaction graph neighbors, hierarchy parents, and hierarchy chil-
dren. Therefore Mobed is a viable replacement for DFS as a solution to the
DynDisMHG problem, especially for sparse interaction graphs.

There are still some cases which have not been investigated in this chapter.
For example, backtracking in multidirectional graph search may not always
be necessary if additional memory is available to store more of the problem
state. In the future we will also empirically analyze the average case efficiency
of this approach. Furthermore, we will empirically analyze the use of Mobed
in distributed problem solving algorithms. There is also much work to be
done in studying constrained forest generation techniques that better balance
the tradeoff between computational efficiency/messaging, edit distance, and



120 Chapter 6.3: Conclusions

privacy, and also methods to maintain other invariants on the constrained
forest’s topology.



Chapter 7

Conclusions

This dissertation has shown that a large family of multiagent organization
problems—collectively called constrained forest problems—can be solved ef-
ficiently in a distributed manner. Many of these problems are NP-Hard
and are therefore intractable in centralized, sequential computation. We
show that, in allowing distribution and exploiting locality in the primal-dual
schema, speedups are achievable. In fact, we have shown that distributed
algorithms can approximate a solution in linear time and, under certain well
defined conditions, can even quiesce in polylogarithmic or even logarithmic
time. This is a bit surprising because many of the constrained forest problems
soluble to our approach are known to be P-Complete.

The primary novel contribution of this dissertation is a generalized dis-
tributed constrained multidirectional search algorithm based on the primal-
dual schema that can solve constrained forest problems with a constant op-
timization bound in no worse than linear communication rounds. We have
shown that the algorithm is correct and complete (i.e., it is guaranteed to find
a feasible solution if one exists). We have also provided a series of examples
of how to instantiate this framework for specific problems, including Steiner
network problems, art gallery/dominating set problems, and location design
& vehicle routing problems.

Strong bounds on the convergence of the algorithm alone is not sufficient,
however. We have therefore proven that if the edge weights of the input graph
are mapped to a metric space that conforms to a specific set of constraints,
then the solutions produced by our algorithm are guaranteed to be 2-optimal.
It has been shown that this requirement is necessary to achieve the speedup
from concurrency. If the input graph is not weighted in a sufficient metric
space for the theoretical guarantees to hold, it was shown that there exists
an ε such that the solution our algorithm discovers is with high probability
ε-optimal. We have also motivated the fact that—even if the conditions of

121



122 Chapter 7: Conclusions

the theoretical guarantees of 2-optimality (qq.v. Propositions 3 and 4) are
not met—the solutions produced by the distributed multiagent graph search
algorithm are with high probability 2-optimal.

The distributed approximation algorithm for multidirectional graph search
is capable of finding a tree in the search space that connects all of a set of
terminals by simultaneously performing a search emanating from each ter-
minal. Each agent only requires local knowledge (i.e., within the connected
component of the forest), and there is no requirement of shared memory.
That this type of search is efficiently distributable is an important result. We
have shown that the algorithm and protocol will run in O(n) communication
rounds, however, empirical evidence suggests that the average case runtime
is much lower. Furthermore, it was shown that the algorithm will produce a
solution whose cost is within a factor of two of optimal. Once again, empiri-
cal evidence suggest that the average approximation bound is much closer to
optimal (at about 1.3).

The constrained multidirectional search algorithm was also adapted for
the location design and routing problem, retaining the same runtime bounds.
Again, provided that the weight of the heaviest edge added in a round is no
more than 150% of the lightest edge, the algorithm is guaranteed to produce
a solution whose cost is no worse than two times optimal. This invariant can
be maintained in general by embedding the true edge weights into [1, 3

2 ] ∈ Q.
Empirical results suggest that the algorithm will in fact produce 2-optimal
solutions for arbitrary edge weight distributions.

As another example of the framework’s instantiation, the algorithm was
extended for application to the art gallery and dominating set problems. It
was shown that it is guaranteed to run in a number communication rounds
on the order of the diameter of the visibility graph. The algorithm produces
a solution whose cost is no worse than a constant factor of optimal with high
probability. For art gallery variants in which the distances between guards
and treasures/vertices must also be minimized, the algorithm is proven to be
a 2-optimal approximation, provided that the edge weights are embedded in
the proper metric space. It is known that the decision version of this and
many other art gallery variants are APX-Hard [12], however, to the best
of our knowledge the question of whether art gallery problems are in APX
is an open problem. By identifying a class of art gallery problems that are
amenable to 2-approximation using our algorithm, we have discovered that
this class of problems is also in APX (and is thereby APX-Complete).

Ultimately, we have furthered the results of Panconesi [67] by show-
ing that the primal-dual optimization scheme proposed by Goemans and
Williamson [73] can be successfully distributed into a multiagent algorithm
with not only bounds on approximation, but also on runtime. This sug-
gests that other multiagent coordination problems might yield to the same
approach.



Chapter 7: Conclusions 123

The ultimate problem we are working toward solving is that of dynamic
multiagent organization. Ideally, the algorithm should not have to completely
re-optimize subsequent to every perturbation of the problem. Therefore, we
identified a family of events from which our algorithm can recover faster than
having to re-optimize from scratch. There are also instances when the topo-
logical constraints on the desired forest are too expressive to be captured
by our current primal-dual model. For such cases, we introduce an algo-
rithmic extension called Multiagent Organization with Bounded Edit Dis-
tance (Mobed). Mobed was compared to the only other viable solution to
the DynDisMHG problem: distributed DFS. It was shown that Mobed will
always reach quiescence in a linear number of rounds for each agent addition
with respect to the total number of agents, but under certain circumstances it
can theoretically run in constant time. Re-running DFS after such a pertur-
bation would also require a linear number of rounds, but may have arbitrarily
bad edit distance. The edit distance of Mobed is always bounded at two ed-
its, which is very low. For sparse graphs (density less than 0.5) Mobed has
at least as good an edit distance as DFS, and exhibited as much as a 300%
benefit. For those instances when Mobed exhibited a higher edit distance
than DFS (i.e., when the graph is dense) its edit distance was no more than
one edit worse. Privacy is also maintained in Mobed insofar as agents only
ever have knowledge of their interaction graph neighbors, hierarchy parents,
and hierarchy children. Therefore Mobed is a viable replacement for DFS
as a solution to the DynDisMHG problem, especially for sparse interaction
graphs.

In the future we will empirically analyze the use of the generalized mul-
tidirectional graph search algorithm and Mobed in distributed systems and
problem solving algorithms. There is also much work to be done in studying
hierarchy generation techniques that better balance the tradeoff between com-
putational efficiency/messaging, edit distance, and privacy, and also methods
to maintain other invariants on the hierarchy’s topology.

Despite the fact that proper functions capture a large family of constrained
forest problems that are amenable to our approach, there is also work to be
done in further generalizing the algorithms such that more expressive well
behaved functions can be used (e.g., well spaced, supermodular, submodular,
and integer valued functions). A generalization of the quality of the solution
for primal-dual methods as applied to constrained forest problems is also
still an open question, as is the related problem of identifying necessary and
sufficient conditions for the distribution of edge weights that will allow for a
constant bound of approximation. Finally, we believe that algorithms of this
ilk are a fruitful method for achieving speedups in constrained search and
many other areas of multiagent systems through parallelism.

Many of the techniques espoused in this dissertation have potential ap-
plication to the domain of social networking. Human systems and societies



124 Chapter 7: Conclusions

have often beckoned researchers with questions like, “Does unchecked, nat-
ural human competition lead to social inequity?” Such problems have been
studied by sociologists [95], biologists [96, 97], and even physicists [98, 99].
Recent interest in social, “small-world” networks has also involved the com-
puter science community [100], however, the majority of the existing work is
focused on studying these systems with the intention of application to human
societies, and therefore implicitly assume an adversarial environment. The
scientific and engineering communities are mostly interested with data min-
ing problems—e.g., classifying cliques in social networks, or targeting ripe
demographics for directed advertising. It is not difficult, however, to envi-
sion certain agent-based societies in which, although each agent has its own
goal, the agents are completely non-adversarial. Furthermore, existing stud-
ies seem to focus on modeling and simulating social hierarchies; given their
assumption that the mechanics by which societies are formed are immutable
aspects of human nature, little or no emphasis is placed on societal construc-
tion and control. These mechanics are mutable in computerized systems.
Understanding of—and algorithms on—these types of social systems would
appear to have wide application in many areas, especially once the dynamics
of computerized agents and communications constraints are considered. If
one were able to model such social systems as networks of interaction con-
straints, the techniques explored in this dissertation might be extended to
optimize such systems subject to their agents’ requirements.

The following is a list of interesting and important open questions that
arise from the results of this dissertation:

• Given the organizational structure employed by a set of agents, what is
the underlying set of constraints that governs their interaction? (In a
sense, this is the inverse of the problem explored in this dissertation.)

• To what extent can Elkin’s time-approximation tradeoff bounds (q.v.
§3.2.3) be unconditionally achieved for constrained forests in general?

• Given a predictive model of the communication constraints between
agents, to what extent is it possible to construct an agent organization
or social hierarchy that better enables coordination?

• To what extent do the existing techniques for social modeling apply in
cooperative, non-adversarial systems?

• If we allow for adversarial agents, how can these techniques be extended
to accommodate varying levels of trust?

• In some organizational topologies, certain agents will have more “power”
or “social influence” than others. Can one discuss (or quantize) the so-
cial influence between agents?



Chapter 7: Conclusions 125

• Given a communications protocol, is it possible to place an a priori
upper bound on the amount of social influence a single individual may
have?

• To what extent can the maximum social influence of a single individual
be minimized by solely modifying the communications network and/or
manually defining the social hierarchy?

In the coming years, mobile computing technologies will undoubtedly con-
tinue to infiltrate every aspect of our daily lives, bringing us ever closer to
this dissertation’s vision of self-organizing agent organizations. The most
significant impact will be gained through seamless, coalition-driven collabo-
ration to aid humans in their daily functions. Successful collaboration will be
achieved through the development of mechanisms for efficient construction
and maintenance of self-organizing networks.





Bibliography

[1] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed con-
trol. Communications of the ACM, 17(11):643–644, 1974. ISSN 0001-
0782. doi: http://doi.acm.org/10.1145/361179.361202. Cited on page 2.

[2] G. Xylomenos, G.C. Polyzos, P. Mahonen, and M. Saaranen. TCP per-
formance issues over wireless links. IEEE Communications Magazine,
39(4):52–58, 2001. Cited on page 2.

[3] Gilbert Laporte. Location-routing problems. In Bruce L. Golden and
Arjang A. Assad, editors, Vehicle Routing: Methods and Studies, pages
163–197. Elsevier, 1988. Cited on pages 3, 63, and 64.

[4] Maxim Peysakhov, Robert N. Lass, William C. Regli, and Moshe Kam.
An ecological approach to agent population management. In Proceed-
ings of the Twentieth National Conference on Artificial Intelligence,
pages 146–151, 2005. Cited on page 4.

[5] Virginia Lo, Dayi Zhou, Yuhong Liu, Chris Gauthier-Dickey, and Jun
Li. Scalable supernode selection in peer-to-peer overlay networks. In
Proceedings of the Second International Workshop on Hot Topics in
Peer-to-Peer Systems, pages 18–27, Washington, DC, USA, 2005. IEEE
Computer Society. ISBN 0-7695-2417-6. doi: http://dx.doi.org/10.
1109/HOT-P2P.2005.17. Cited on pages 4 and 64.

[6] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer systems.
In Middleware: Proceedings of the IFIP/ACM International Conference
on Distributed Systems Platforms, pages 329–350, London, UK, 2001.
Springer-Verlag. ISBN 3-540-42800-3. Cited on page 4.

[7] Jan Melechovský, Christian Prins, and Roberto Wolfler Calvo. A meta-
heuristic to solve a location-routing problem with non-linear costs.
Journal of Heuristics, 11(5–6):375–391, 2005. ISSN 1381-1231. doi:
http://dx.doi.org/10.1007/s10732-005-3601-1. Cited on pages 4 and 64.

127



128 BIBLIOGRAPHY

[8] Joseph O’Rourke. Art Gallery Theorems and Algorithms. Oxford Uni-
versity Press, 1987. ISBN 0-19-503965-3. Cited on pages 5 and 79.

[9] Héctor González-Banos and Jean-Claude Latombe. A randomized art-
gallery algorithm for sensor placement. In Proceedings of the Seven-
teenth Annual Symposium on Computational Geometry, pages 232–
240, New York, NY, USA, 2001. ACM. ISBN 1-58113-357-X. doi:
http://doi.acm.org/10.1145/378583.378674. Cited on page 5.

[10] Alok Aggarwal. The Art Gallery Theorem: its Variations, Applications
and Algorithmic Aspects. PhD thesis, Johns Hopkins University, 1984.
Cited on page 5.

[11] Der-Tsai Lee and Abel W. Lin. Computational complexity of art
gallery problems. IEEE Transactions on Information Theory, 32(2):
276–282, 1986. ISSN 0018-9448. doi: http://dx.doi.org/10.1109/TIT.
1986.1057165. Cited on page 5.

[12] Stephan Eidenbenz, Peter Widmayer, and Christoph Stamm. Inapprox-
imability results for guarding polygons and terrains. Algorithmica, 31
(1):79–113, 2001. Cited on pages 5 and 122.

[13] Richard M. Karp. Reducibility among combinatorial problems. In R. E.
Miller and J. W. Thatcher, editors, Complexity of Computer Computa-
tions, pages 85–103, New York, 1972. Plenum. Cited on page 5.

[14] David P. Williamson, Michel X. Goemans, Milena Mihail, and Vijay V.
Vazirani. A primal-dual approximation algorithm for generalized steiner
network problems. Combinatorica, 15(3):435–454, September 1995.
Cited on pages 5, 20, 22, 33, 75, and 93.

[15] Joseph Macker, Ian Downard, Justin Dean, and Brian Adamson. Eval-
uation of distributed cover set algorithms in mobile ad hoc network for
simplified multicast forwarding. SIGMOBILE Mobile Computing Com-
munications Review, 11(3):1–11, 2007. doi: 10.1145/1317425.1317426.
URL http://portal.acm.org/citation.cfm?id=1317425.1317426&

coll=Portal&dl=GUIDE&CFID=64765812&CFTOKEN=41652687. Cited
on pages 5, 11, and 80.

[16] Onn Shehory and Sarit Kraus. Methods for task allocation via
agent coalition formation. Artificial Intelligence, 101(1-2):165–200,
1998. ISSN 0004-3702. doi: http://dx.doi.org/10.1016/S0004-3702(98)
00045-9. Cited on pages 7 and 10.

[17] Katia Sycara, Keith Decker, Anandeep Pannu, Mike Williamson, and
Dajun Zeng. Distributed intelligent agents. IEEE Expert: Intelligent

http://portal.acm.org/citation.cfm?id=1317425.1317426&coll=Portal&dl=GUIDE&CFID=64765812&CFTOKEN=41652687
http://portal.acm.org/citation.cfm?id=1317425.1317426&coll=Portal&dl=GUIDE&CFID=64765812&CFTOKEN=41652687


BIBLIOGRAPHY 129

Systems and Their Applications, 11(6):36–46, 1996. Cited on pages 7,
10, 15, 29, and 76.

[18] Marius C. Silaghi and Makoto Yokoo. Distributed constraint reason-
ing. In Juan Ramón Rabuñal Dopico, Julián Dorado de la Calle, and
Alejandro Pazos Sierra, editors, Encyclopedia of Artificial Intelligence,
pages 507–513. Information Science Reference, 2008. Cited on pages 7,
9, and 12.

[19] Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo.
ADOPT: Asynchronous distributed constraint optimization with qual-
ity guarantees. Artificial Intelligence Journal, 161(1–2):149–180, 2005.
Cited on pages 7, 11, 13, 14, and 26.

[20] Adrian Petcu and Boi V. Faltings. A scalable method for multiagent
constraint optimization. In Proceedings of the International Joint Con-
ference on Artificial Intelligence, pages 266–271, 2005. Cited on pages 7,
13, and 14.

[21] Anton Chechetka and Katia Sycara. No-commitment branch and bound
search for distributed constraint optimization. In Proceedings of the fifth
international joint conference on autonomous agents and multiagent
systems, pages 1427–1429, Hakodate, Japan, 2006. ACM Press. ISBN 1-
59593-303-4. doi: http://doi.acm.org/10.1145/1160633.1160900. Cited
on page 7.

[22] Lap Kong Law, Srikanth V. Krishnamurthy, and Michalis Faloutsos.
Understanding and exploiting the trade-offs between broadcasting and
multicasting in mobile ad hoc networks. IEEE Transactions on Mobile
Computing, 6(3):264–279, 2007. Cited on page 7.

[23] Adrian Petcu and Boi Faltings. S-DPOP: Superstabilizing, fault-
containing multiagent combinatorial optimization. In Proceedings of
the Twentieth National Conference on Artificial Intelligence, pages 449–
454, July 2005. Cited on page 8.

[24] Adrian Petcu and Boi Faltings. R-DPOP: Optimal solution stability
in continuous-time optimization. In Proceedings of the International
Conference on Intelligent Agent Technology, November 2007. Cited on
page 8.

[25] Robert N. Lass, Evan A. Sultanik, and William C. Regli. Dynamic
distributed constraint reasoning. In Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, pages 1886–1887, 2008.
Cited on page 8.



130 BIBLIOGRAPHY

[26] Klaus Fischer, Michael Schillo, and Jörg Siekmann. Holonic and multi-
agent systems for manufacturing. In Holonic Multiagent Systems: A
Foundation for the Organisation of Multiagent Systems, volume 2744 of
Lecture Notes in Computer Science, pages 1083–1084. Springer, 2004.
Cited on pages 8 and 11.

[27] Chris J. van Aart, Bob Wielinga, and Guus Schreiber. Organizational
building blocks for design of distributed intelligent system. Interna-
tional Journal of Human-Computer Studies, 61(5):567–599, 2004. ISSN
1071-5819. doi: http://dx.doi.org/10.1016/j.ijhcs.2004.03.001. Cited on
page 8.

[28] Makoto Yokoo. Asynchronous weak-commitment search for solving dis-
tributed constraint satisfaction problems. In Proceedings of the First
International Conference on Principles and Practice of Constraint Pro-
gramming, pages 407–422, 1995. Cited on pages 8 and 9.

[29] Anton Chechetka and Katia Sycara. A decentralized variable order-
ing method for distributed constraint optimization. In Proceedings of
the Fourth International Joint Conference on Autonomous Agents and
Multiagent Systems, July 2005. Cited on pages 8, 9, and 104.

[30] Evan A. Sultanik, Robert N. Lass, and William C. Regli. Dynamic
configuration of agent organizations. In Proceedings of the International
Joint Conference on Artificial Intelligence, July 2009. Cited on pages 8,
10, and 104.

[31] Stefan Arnborg. Efficient algorithms for combinatorial problems on
graphs with bounded decomposability—a survey. BIT Numerical Math-
ematics, 25(1):1–23, March 1985. Cited on page 8.

[32] Youssef Hamadi, Christian Bessière, and Joël Quinqueton. Backtrack-
ing in distributed constraint networks. In Proceedings of the European
Conference on Artificial Intelligence, pages 219–223, 1998. Cited on
page 9.

[33] Zeev Collin and Shlomi Dolev. Self-stabilizing depth-first search. In-
formation Processing Letters, 49(6):297–301, 1994. Cited on page 9.

[34] John Davin and Pragnesh Jay Modi. Hierarchical variable ordering
for distributed constraint optimization. In Proceedings of the Fifth In-
ternational Joint Conference on Autonomous Agents and Multiagent
Systems, pages 1433–1435, New York, NY, USA, 2006. ACM. Cited on
page 9.

[35] Marius Silaghi and Makoto Yokoo. Dynamic DFS tree in ADOPT-ing.
In Proceedings of the Twenty-Second AAAI Conference on Artificial
Intelligence, Vancouver, BC, Canada, September 2007. Cited on page 9.



BIBLIOGRAPHY 131

[36] James Atlas and Keith Decker. A complete distributed constraint opti-
mization method for non-traditional pseudotree arrangements. In Pro-
ceedings of the 6th international joint conference on Autonomous agents
and multiagent systems, pages 1–8, New York, NY, USA, 2007. ACM.
ISBN 978-81-904262-7-5. doi: http://doi.acm.org/10.1145/1329125.
1329262. Cited on page 9.

[37] Roie Zivan and Amnon Meisels. Dynamic ordering for asynchronous
backtracking on DisCSPs. Constraints, 11:179–197, 2006. Cited on
page 9.

[38] Thomas R. Ioerger and Linli He. Modeling command and control in
multi-agent systems. In Proceedings of the 8th International Command
and Control Research and Technology Symposium, June 2003. Cited on
page 11.

[39] Dimitrios J. Vergados, Nikolaos A. Pantazis, and Dimitrios D. Ver-
gados. Energy-efficient route selection strategies for wireless sensor
networks. Mobile Networks and Applications, 13(3–4):285–296, 2008.
URL http://portal.acm.org/citation.cfm?id=1414641.1414646&

coll=Portal&dl=ACM&CFID=66742779&CFTOKEN=96468443. Cited on
page 11.

[40] Qunfeng Dong. Maximizing system lifetime in wireless sen-
sor networks. In Proceedings of the 4th International Sympo-
sium on Information Processing in Sensor Networks, Los An-
geles, California, 2005. IEEE Press. ISBN 0-7803-9202-7.
URL http://portal.acm.org/citation.cfm?id=1147685.1147690&

coll=Portal&dl=ACM&CFID=66742779&CFTOKEN=96468443. Cited on
page 11.

[41] William Yeoh, Ariel Felner, and Sven Koenig. BnB-ADOPT: an
asynchronous branch-and-bound DCOP algorithm. In Proceed-
ings of the 7th International Joint Conference on Autonomous
Agents and Multiagent Systems, volume 2, pages 591–598, Es-
toril, Portugal, 2008. International Foundation for Autonomous
Agents and Multiagent Systems. ISBN 978-0-9817381-1-6. URL
http://portal.acm.org/citation.cfm?id=1402298.1402307&

coll=Portal&dl=GUIDE&CFID=63340268&CFTOKEN=98798546. Cited
on pages 11 and 14.

[42] Jonathan P. Pearce and Milind Tambe. Quality guarantees on k-optimal
solutions for distributed constraint optimization problems. In Proceed-
ings of the 20th International Joint Conference on Artifical Intelligence,

http://portal.acm.org/citation.cfm?id=1414641.1414646&coll=Portal&dl=ACM&CFID=66742779&CFTOKEN=96468443
http://portal.acm.org/citation.cfm?id=1414641.1414646&coll=Portal&dl=ACM&CFID=66742779&CFTOKEN=96468443
http://portal.acm.org/citation.cfm?id=1147685.1147690&coll=Portal&dl=ACM&CFID=66742779&CFTOKEN=96468443
http://portal.acm.org/citation.cfm?id=1147685.1147690&coll=Portal&dl=ACM&CFID=66742779&CFTOKEN=96468443
http://portal.acm.org/citation.cfm?id=1402298.1402307&coll=Portal&dl=GUIDE&CFID=63340268&CFTOKEN=98798546
http://portal.acm.org/citation.cfm?id=1402298.1402307&coll=Portal&dl=GUIDE&CFID=63340268&CFTOKEN=98798546


132 BIBLIOGRAPHY

pages 1446–1451, Hyderabad, India, 2007. Morgan Kaufmann Publish-
ers Inc. URL http://portal.acm.org/citation.cfm?id=1625509.
Cited on page 11.

[43] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman, January
1979. Cited on pages 11, 12, and 80.

[44] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms. McGraw-Hill, second edition,
2001. Cited on pages 12 and 141.

[45] David Musser. Introspective sorting and selection algorithms. Software:
Practice and Experience, 27(8):983–993, 1997. Cited on page 12.

[46] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1997.
ISBN 1558603484. Cited on pages 12, 29, and 76.

[47] Ying Zhang and Alan K. Mackworth. Parallel and distributed algo-
rithms for finite constraint satisfaction problems. In Proceedings of the
Third IEEE Symposium on Parallel and Distributed Processing, pages
394–397, 1991. Cited on page 13.

[48] Harsh Bhatia, Rathinasamy Lenin, Aarti Munjal, Srini Ramaswamy,
and Sanjay Srivastava. A queuing-theoretic framework for modeling and
analysis of mobility in WSNs. In Proceedings of the Eighth Performance
Metrics for Intelligent Systems Workshop. The National Institute of
Standards and Technology, September 2008. Cited on page 13.

[49] Weixiong Zhang, Zhao Xing, Guandong Wang, and Lars Wittenburg.
An analysis and application of distributed constraint satisfaction and
optimization algorithms in sensor networks. In Proceedings of the Sec-
ond International Joint Conference on Autonomous Agents and Multi-
agent Systems, pages 185–192, New York, NY, USA, 2003. ACM. ISBN
1-58113-683-8. doi: http://doi.acm.org/10.1145/860575.860605. Cited
on page 14.

[50] Adrian Petcu and Boi Faltings. MB-DPOP: a new memory-bounded
algorithm for distributed optimization. In Proceedings of the 20th In-
ternational Joint Conference on Artifical Intelligence, pages 1452–1457,
Hyderabad, India, 2007. Morgan Kaufmann Publishers Inc. URL http:

//portal.acm.org/citation.cfm?id=1625510. Cited on page 14.

[51] Amnon Meisels, Eliezer Kaplansky, Igor Razgon, and Roie Zivan. Com-
paring performance of distributed constraints processing algorithms. In
Proceedings of the Third International Workshop on Distributed Con-
straint Reasoning, Bologna, Italy, July 2002. URL citeseer.ist.psu.

edu/meisels02comparing.html. Cited on page 13.

http://portal.acm.org/citation.cfm?id=1625509
http://portal.acm.org/citation.cfm?id=1625510
http://portal.acm.org/citation.cfm?id=1625510
citeseer.ist.psu.edu/meisels02comparing.html
citeseer.ist.psu.edu/meisels02comparing.html


BIBLIOGRAPHY 133

[52] John Davin and Pragnesh Jay Modi. Impact of problem centralization
in distributed constraint optimization algorithms. In Proceedings of
the Fourth International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 1057–1063, Utrecht, The Netherlands, 2005.
ACM Press. ISBN 1-59593-093-0. doi: http://doi.acm.org/10.1145/
1082473.1082633. Cited on page 13.

[53] Marius Silaghi, Robert N. Lass, Evan A. Sultanik, William C.
Regli, Toshihiro Matsui, and Makoto Yokoo. Constant cost of the
computation-unit in efficiency graphs for dcops. In Proceedings of the
International Conference on Intelligent Agent Technology, December
2008. Cited on page 13.

[54] Leslie Lamport. Time, clocks and the ordering of events in a distributed
system1. Communications of the ACM, 21(7):558–565, July 1978. Cited
on page 13.

[55] Yaacov Fernandess, Antonio Fernández, and Maxime Monod. A generic
theoretical framework for modeling gossip-based algorithms. SIGOPS
Operating Systems Review, 41(5):19–27, 2007. doi: 10.1145/1317379.
1317384. URL http://portal.acm.org/citation.cfm?id=1317379.

1317384&coll=GUIDE&dl=ACM&CFID=64961512&CFTOKEN=44495261.
Cited on page 15.

[56] Alexandros G. Dimakis, Anand D. Sarwate, and Martin J. Wain-
wright. Geographic gossip: efficient aggregation for sensor networks.
In Proceedings of the 5th international conference on Information pro-
cessing in sensor networks, pages 69–76, Nashville, Tennessee, USA,
2006. ACM. ISBN 1-59593-334-4. doi: 10.1145/1127777.1127791.
URL http://portal.acm.org/citation.cfm?id=1127777.1127791&

coll=GUIDE&dl=ACM&CFID=64961512&CFTOKEN=44495261. Cited on
page 15.

[57] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and De-
vavrat Shah. Randomized gossip algorithms. IEEE Trans-
actions on Information Theory, 52(6):2508–2530, 2006. URL
http://portal.acm.org/citation.cfm?id=1148663.1148679&

coll=GUIDE&dl=ACM&CFID=64961512&CFTOKEN=44495261. Special
issue of IEEE Transactions on Information Theory and IEEE/ACM
Transactions on Networking. Cited on page 15.

1This is one of the most cited computer science papers of all time [101] and contains
perhaps the most amusing footnote of any academic paper ever2 (which was the inspiration
for the footnotes on page 13 of this dissertation).

2. . . even more amusing than this footnote.

http://portal.acm.org/citation.cfm?id=1317379.1317384&coll=GUIDE&dl=ACM&CFID=64961512&CFTOKEN=44495261
http://portal.acm.org/citation.cfm?id=1317379.1317384&coll=GUIDE&dl=ACM&CFID=64961512&CFTOKEN=44495261
http://portal.acm.org/citation.cfm?id=1127777.1127791&coll=GUIDE&dl=ACM&CFID=64961512&CFTOKEN=44495261
http://portal.acm.org/citation.cfm?id=1127777.1127791&coll=GUIDE&dl=ACM&CFID=64961512&CFTOKEN=44495261
http://portal.acm.org/citation.cfm?id=1148663.1148679&coll=GUIDE&dl=ACM&CFID=64961512&CFTOKEN=44495261
http://portal.acm.org/citation.cfm?id=1148663.1148679&coll=GUIDE&dl=ACM&CFID=64961512&CFTOKEN=44495261


134 BIBLIOGRAPHY

[58] Mauro Sozio. Efficient Distributed Algorithms via the Primal-Dual
Schema. PhD thesis, “La Sapienza” University, Rome, September 2006.
Cited on pages 15 and 20.

[59] Amir Sadeh. Distributed primal-dual approximation algorithms for net-
work design problems. Master’s thesis, The Open University of Israel,
December 2008. Cited on pages 15 and 20.

[60] Manica Aggarwal and Naveen Garg. A Scaling Technique for Better
Network Design. In Proceedings of the Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 233–240, Philadelphia, PA, USA,
1994. Society for Industrial and Applied Mathematics. ISBN 0-89871-
329-3. URL http://portal.acm.org/citation.cfm?id=314464.

314498&coll=Portal&dl=ACM&CFID=31452541&CFTOKEN=77022537#.
Cited on pages 17, 22, 25, 28, and 61.

[61] Vijay V. Vazirani. Primal-Dual schema based approximation algorithms
(Abstract). In Computing and Combinatorics, pages 650–652, 1995.
URL http://citeseer.ist.psu.edu/vazirani95primaldual.html.
Cited on pages 18, 22, and 28.

[62] Vašek Chvátal. Linear Programming. W. H. Freeman, New York, 1983.
Cited on page 19.

[63] Carlo Lombardi. Primal-dual algorithms. Lecture Notes, June 2008.
Cited on page 19.

[64] Harold W. Kuhn. The hungarian method for the assignment problem.
Naval Research Logistics Quarterly, 2:83–97, 1955. Cited on page 19.

[65] George Bernard Dantzig, Lester Randolph Ford, Jr., and Delbert Ray
Fulkerson. A primal-dual algorithm for linear programs. In Harold W.
Kuhn and Albert W. Tucker, editors, Linear Inequalities and Related
Systems, pages 171–181, Princeton, NJ, 1956. Princeton University
Press. Cited on page 19.

[66] Reuven Bar-Yehuda and Shimon Even. A linear-time approximation
algorithm for the weighted vertex cover problem. Journal of Algorithms,
2:198–203, 1981. Cited on page 19.

[67] Alessandro Panconesi. Fast Distributed Algorithms Via Primal-Dual
(Extended Abstract), volume 4474, pages 1–6. Springer, Heidelberg,
2007. Cited on pages 20, 95, and 122.

[68] Marcelo Santos, Lúcia M. A. Drummond, and Eduardo Uchoa. A dis-
tributed primal-dual heuristic for steiner problems in networks. In Ex-
perimental Algorithms, volume 4525, pages 175–188. Springer, 2007.
Cited on pages 20, 77, and 94.

http://portal.acm.org/citation.cfm?id=314464.314498&coll=Portal&dl=ACM&CFID=31452541&CFTOKEN=77022537#
http://portal.acm.org/citation.cfm?id=314464.314498&coll=Portal&dl=ACM&CFID=31452541&CFTOKEN=77022537#
http://citeseer.ist.psu.edu/vazirani95primaldual.html


BIBLIOGRAPHY 135

[69] Ricardo C. Corrêa, Fernando C. Gomes, Carlos A. S. Oliveira, and
Panos M. Pardalos. A parallel implementation of an asynchronous team
to the point-to-point connection problem. Parallel Computing, 29(4):
447–466, May 2002. Cited on page 20.

[70] Alessandro Panconesi and Mauro Sozio. Fast distributed scheduling
via primal-dual. In Proceedings of the twentieth annual symposium on
Parallelism in algorithms and architectures, pages 229–235, Munich,
Germany, 2008. ACM. ISBN 978-1-59593-973-9. Cited on page 20.

[71] Samir Khuller, Uzi Vishkin, and Neal Young. A primal-dual paral-
lel approximation technique applied to weighted set and vertex cover.
Journal of Algorithms, 17(2):280–289, October 1994. Cited on page 20.

[72] F. Grandoni, J. Könemann, Alessandro Panconesi, and Mauro Sozio.
Primal-dual based distributed algorithms for vertex cover with semi-
hard capacities. In Proceedings of the twenty-fourth annual ACM sym-
posium on Principles of distributed computing, pages 118–125, Las Ve-
gas, NV, USA, 2005. ISBN 1-59593-994-2. Cited on page 20.

[73] Michel X. Goemans and David P. Williamson. A general approximation
technique for constrained forest problems. SIAM Journal on Comput-
ing, 24:296–317, 1995. Cited on pages 20, 21, 61, 64, 68, 85, 93, 95,
and 122.

[74] Kamal Jain. A factor 2 approximation algorithm for the generalized
steiner network problem. In Proceedings of the 39th Annual Sympo-
sium on Foundations of Computer Science, page 448. IEEE Computer
Society, 1998. ISBN 0-8186-9172-7. URL http://portal.acm.org/

citation.cfm?id=796444. Cited on page 22.

[75] Michael X. Goemans, Andrew V. Goldberg, Serge Plotkin, David B.
Shmoys, Éva Tardos, and David P. Williamson. Improved approxima-
tion algorithms for network design problems. In Proceedings of the 5th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 223–
232, January 1994. Cited on page 22.

[76] J. E. Dennis, Jr. and Virginia Torczon. Direct search methods on paral-
lel machines. SIAM Journal on Optimization, 1(4):448–474, November
1991. Cited on page 25.

[77] David Ilcinkas, Nicolas Nisse, and David Soguet. The cost of mono-
tonicity in distributed graph searching. Distributed Computing, 22(2):
117–127, September 2009. Cited on page 25.

[78] David Šǐslák, Pavel Jisl, Přemysl Volf, Michal Pěchouček, David Nichol-
son, David Woodhouse, and Niranjan Suri. Integration of probability

http://portal.acm.org/citation.cfm?id=796444
http://portal.acm.org/citation.cfm?id=796444


136 BIBLIOGRAPHY

collectives for collision avoidance in agentfly. In Proceedings of 8th In-
ternational Conference on Autonomous Agents and Multiagent Systems,
pages 69–76, May 2009. Cited on page 25.

[79] Richard E. Korf. Linear-time disk-based implicit graph search. Journal
of the ACM, 55(6):1–40, 2008. ISSN 0004-5411. doi: http://doi.acm.
org/10.1145/1455248.1455250. Cited on page 26.

[80] Michael Elkin. Unconditional lower bounds on the time-approximation
tradeoffs for the distributed minimum spanning tree problem. In Pro-
ceedings of the Thirty-Sixth Annual ACM Symposium on Theory of
Computing, pages 331–340, New York, NY, USA, 2004. ACM. ISBN 1-
58113-852-0. doi: http://doi.acm.org/10.1145/1007352.1007407. Cited
on pages 41, 42, and 43.

[81] Sándor Csörgő and Gordon Simons. Precision calculation of distri-
butions for trimmed sums. The Annals of Applied Probability, 5(3):
854–873, 1995. Cited on page 48.

[82] H. N. Nagaraja. Order statistics from independent exponential random
variables and the sum of the top order statistics. In N. Balakrishnan,
Enrique Castillo, and José Maŕıa Sarabia, editors, Advances in Dis-
tribution Theory, Order Statistics, and Inference, Part III, Statistics
for Industry and Technology, pages 173–185. Birkhäuser, Boston, 2006.
Cited on page 52.

[83] Shay Halperin and Uri Zwick. Optimal randomized EREW PRAM
algorithms for finding spanning forests and for other basic graph con-
nectivity problems. In Proceedings of the Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 438–447, Philadelphia, PA,
USA, 1996. Society for Industrial and Applied Mathematics. ISBN
0-89871-366-8. Cited on page 64.

[84] Richard Cole, Philip N. Klein, and Robert E. Tarjan. Finding mini-
mum spanning forests in logarithmic time and linear work using ran-
dom sampling. In Proceedings of the Eighth Annual ACM Symposium
on Parallel Algorithms and Architectures, pages 243–250, New York,
NY, USA, 1996. ACM. ISBN 0-89791-809-6. doi: http://doi.acm.org/
10.1145/237502.237563. Cited on page 64.

[85] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine
generals problem. ACM Transactions on Programming Languages and
Systems, 4(3):382–401, 1982. ISSN 0164-0925. doi: http://doi.acm.org/
10.1145/357172.357176. Cited on page 76.



BIBLIOGRAPHY 137

[86] Robert N. Lass, Michael J. Grauer, Evan A. Sultanik, and William C.
Regli. A decentralized approach to the art gallery problem. In Proceed-
ings of the 17th Fall Conference on Computational Geometry, Novem-
ber 2007. Cited on page 80.

[87] Amnon Meisels. Distributed Search by Constrained Agents: Algorithms,
Performance, Communication. Springer-Verlag, London, 2008. ISBN
1848000391, 9781848000391. Cited on page 80.

[88] Anurag Ganguli, Jorge Cortés, and Francesco Bullo. Visibility-based
multi-agent deployment in orthogonal environments. In Proceedings of
the American Control Conference, pages 3426–3431, New York, July
2007. Cited on page 80.

[89] Jie Wu and Hailan Li. On calculating connected dominating set for
efficient routing in ad hoc wireless networks. In Proceedings of the
3rd International Workshop on Discrete Algorithms and Methods for
Mobile Computing and Communications, pages 7–14, New York, NY,
USA, 1999. ACM. ISBN 1-58113-174-7. doi: http://doi.acm.org/10.
1145/313239.313261. Cited on page 80.

[90] Lu Ruan, Hongwei Du, Xiaohua Jia, Weili Wu, Yingshu Li, and Ker-
I Ko. A greedy approximation for minimum connected dominating
sets. Theoretical Computer Science, 329(1–3):325–330, 2004. ISSN
0304-3975. doi: http://dx.doi.org/10.1016/j.tcs.2004.08.013. Cited on
page 80.

[91] Chuanhe Huang, Chuan Qin, and Yi Xian. A distributed algorithm for
computing connected dominating set in ad hoc networks. International
Journal of Wireless and Mobile Computing, 1(2):148–155, 2006. ISSN
1741-1084. doi: http://dx.doi.org/10.1504/IJWMC.2006.012474. Cited
on page 81.

[92] Linda L. Deneen and Shashikant Joshi. Treasures in an art gallery. In
Proceedings of the 4th Canadian Conference on Computer Geometry,
pages 17–22, 1992. Cited on page 92.

[93] Svante Carlsson and H̊akan Jonsson. Guarding a treasury. In Proceed-
ings of the 5th Canadian Conference on Computer Geometry, pages
85–90, 1993. Cited on page 93.

[94] Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed
Computing Column), 32(4):51–58, December 2001. Cited on page 102.

[95] James Samuel Coleman. Foundations of Social Theory. Belknap, New
York, 1994. Cited on page 124.



138 BIBLIOGRAPHY

[96] Lee Alan Dugatkin. Winner and loser effects and the structure of
dominance hierarchies. Behavioral Ecology, 8:583–587, 1997. Cited
on page 124.

[97] Charlotte K. Hemelrijk. Towards the integration of social dominance
and spatial structure. Animal Behavior, 59:1035–1048, 2000. Cited on
page 124.

[98] Eric Bonabeau, Guy Theraulaz, and Jean-Louis Deneubourg. Phase
diagram of a model of self-organizing hierarchies. Physics A, 217:373–
392, 1995. Cited on page 124.

[99] Lazaros K. Gallos. Self-organizing social hierarchies on scale-free net-
works. International Journal of Modern Physics C, 16(8):1329–1336,
2005. Cited on page 124.

[100] Michael Kirley. Dominance hierarchies and social diversity in multi-
agent systems. In Proceedings of the 8th annual conference on Genetic
and Evolutionary Computation, pages 159–166, New York, NY, USA,
2006. ACM. ISBN 1-59593-186-4. doi: http://doi.acm.org/10.1145/
1143997.1144026. Cited on page 124.

[101] CiteSeer. Most cited articles in computer science, September 2006.
http://citeseer.ist.psu.edu/articles.html. Cited on page 133.

[102] Leslie Lamport. LATEX: A Document Preparation System. Addison-
Wesley, Menlo Park, 1986. Cited on page 151.

[103] Donald E. Knuth. The TEXbook. Addison-Wesley, Menlo Park, 1984.
Cited on page 151.

[104] Donald E. Knuth. Computer Modern Typefaces, volume E of Computers
and Typesetting. Addison-Wesley, Reading, MA, USA, 1986. ISBN 0-
201-13446-2. Cited on page 151.

http://citeseer.ist.psu.edu/articles.html


Appendix A

Notation, Nomenclature,
and Glossary

Notation

≡ The definition of an identity.
R+ The transitive closure of a binary relation R.

X × Y If X and Y are sets, the Cartesian product (or direct prod-
uct) of two sets: {(x, y)|x ∈ X ∧ y ∈ Y }, otherwise multi-
plication.∏ The Cartesian product over the elements of a set.∏
i∈{1,2,3,4}Xi ≡ X1 ×X2 ×X3 ×X4.

2X The power set of X.
|X| Cardinality, when X is a set; the absolute value of X

otherwise.
〈a, b, c〉 A tuple containing elements a, b, and c.
\ The relative complement set operator: A \ B ≡ {x ∈ A :

x /∈ B}.
	 The symmetric difference set operator: A	B ≡ (A∪B)−

(A ∩B).
XT The transpose of a matrix X.

erf(x) The error function: erf(x) =
2√
π

∫ x

0

e−t
2

dt.

max
x∈X

f(x) The maximum value of f(x) over all elements in the set
X.

139



140 Chapter A: Notation, Nomenclature, and Glossary

f : A→ B A function, f , mapping the elements of set A to the ele-
ments of the set B.

f(a) 7→ b The statement that function f maps a ∈ A to b ∈ B.
f−1(b) The inverse of a function; given a function f : A → B,

f−1 maps B to a subset of A such that f−1(b) 7→ {a ∈ A :
f(a) 7→ b}.

=⇒ The material conditional (i.e., implies operator); p =⇒
q ≡ ¬p ∨ q.

u ; v The path between vertices u and v in a graph.
⇐⇒ If and only if: p⇐⇒ q ≡ (p =⇒ q) ∧ (q =⇒ p).
d
= The operands exhibit the same distribution.

O(g(x)) Given two functions f(x) and g(x) defined on some subset
of R, we say f(x) is O(g(x)) as x → ∞ if and only if
∃x0∃y > 0 such that |f(x)| ≤ y|g(x)| for x > x0.

L1 ≤p L2 The language L1 is polynomial-time reducible to a lan-
guage L2; there exists a polynomial-time function f :
{0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗, x ∈ L1 ⇐⇒
f(x) ∈ L2.

Nomenclature

∅ The empty set.
B A boolean domain: {True,False}.
δ A function δ : 2V → 2V×V such that given a set of vertices

of a graph S ⊆ V , δ(S) 7→ C implies that each edge in C
contains exactly one endpoint in S.

N Unless otherwise stated, N : V → 2V is a function map-
ping vertices of a graph to their neighbors. N(v) 7→ {x, y}
means that vertices x and y are directly connected to v.
Note that N is an “open” neighborhood function, meaning
that v itself is never returned in the set N(v).

N0 The natural numbers, including zero (i.e., non-negative
integers).

NP The class of languages (i.e., problems) can be verified by
a polynomial-time algorithm. A language L belongs to
NP if and only if there exist a two-input polynomial-time
algorithm A and a constant c such that L = {x ∈ {0, 1}∗ :
there exists a certificate y with |y| = O (|x|c) such that
A(x, y) = 1}.



Chapter A: Notation, Nomenclature, and Glossary 141

NP-Hard Non-deterministic Polynomial-time Hard. A class of lan-
guages (i.e., problems) that contains all languages L such
that for all L′ ∈ NP, L′ ≤p L.

Q The rational numbers.
R The real numbers.
§ A section of this document, e.g., “§2.1” refers to the first

section of the second chapter.

“we”/“us”/“our”
Pluralis modestiæ. The author has attempted to forgo
first person singular pronouns in an effort to engage the
reader, remain somewhat modest, and tempt assumptions
of schizophrenia.

Z The integers.

The definitions for O(g(x)), L1 ≤p L2, NP, and NP-Hard were adapted
from [44].

Glossary of Abbreviations, Acronyms, and Ini-
tialisms

a.k.a. also known as
CDF Cumulative Distribution Function

cf. confer consult
CREW Concurrent Read Exclusive Write
DisCOP Distributed Constraint Optimization Problem (sometimes

also abbreviated “DCOP”)
DPOP The Distributed Pseudotree Optimization Procedure
DSA The Distributed Stochastic Algorithm

DynDisMHG Dynamic Distributed Multiagent Hierarchy Generation
& et and

& [pl.] al. et [pluribus] alii/aliæ/alia and [many] other
men/women/things

&c. et cetera and the rest
e.g. exempli gratia for example
i.e. id est that is [to say]
IP Integer Program

LAN Local Area Network
LP Linear Program

MANET Mobile Ad Hoc Network
MAS Multiagent System
MST Minimum Spanning Tree



142 Chapter A: Notation, Nomenclature, and Glossary

Mobed Multiagent Organization with Bounded Edit Distance
ε-OPT An algorithm is ε-Optimal (ε-OPT) if its solutions are

guaranteed to be no worse than ε times the cost of the
optimal solution.

PRAM Parallel Random Access Machine
PDF Probability Density Function
q.v. quod vide for which, see (herein)
qq.v. quæ vide for which (plural), see (herein)
TikZ TikZ iĆ k e i n ZeiĚenprogrammTikZ is not a drawing program

vice versa Latin for “the other way around”.
vi&. videlicet/videre licet that is to say (precisely)



Index

Important references are given in italics.

active components, 30
agent

hierarchy, 2
algorithm

Adopt, 11, 13
approximation, 17, 48
asynchronous, 12
distributed consensus, 29, 76
Distributed Pseudotree Optimization, q.v. Distributed Pseudotree Opti-

mization Procedure (DPOP) 13
Distributed Stochastic (DSA), q.v. Distributed Stochastic Algorithm (DSA) 13
generalized distributed constrained forest, 15, 62
gossip, 15
multidirectional graph search, 26–36, 83, 97
Newton-Raphson, q.v. Newton-Raphson method 55
superstabilizing, q.v. superstability 97
synchronous, 12
Two Peasants, q.v. Two Peasants method 92

ancestor, 105
APX, 122
APX-Complete, 122
APX-Hard, 5, 122
art gallery problem, 5, 79–94

blocks, engaged, q.v. engaged blocks 111
broadcast, 77, 94
Byzantine, failure, 76

causality, principle of, 13
central limit theorem, 50, 57
command and control, 11

143



144 Chapter A: Notation, Nomenclature, and Glossary

complementary slackness, 19, 28
complexity theory, 11
Concurrent Read Exclusive Write (CREW), 67
constrained forest, 2, 22, 25, 61
convergecast, 77, 94
cooperative multiagent systems, 10, 13, 29, 76

deadlock, 76, 109
deconfliction, distributed, 25
density, edge, q.v. edge density 113
depth, 105
descendant, 105
distributed constraint optimization (DisCOP), q.v. distributed constraint rea-

soning (DCR) 14
distributed constraint reasoning (DCR), 10, 14
distributed problem solving, 10
Distributed Pseudotree Optimization Procedure (DPOP), 13
Distributed Stochastic Algorithm (DSA), 13
distribution

β, 49
exponential, 52
non-negative, 47
normal, 50, 54
ratio, 47
uniform, 49

dominating set problem, 80
Dynamic Distributed Multiagent Hierarchy Generation (DynDisMHG) prob-

lem, 1, 7–8
applications, 10
challenges, 106

edge density, 62, 113
edit distance, 116
engaged blocks, 111
ε-OPT, 11
Erdős-Rényi model, 62
expected value, 47

facility location problem, 20
failure, Byzantine, 29
function

cumulative distribution (CDF), 47
digamma, 54
probability density (PDF), 47



Chapter A: Notation, Nomenclature, and Glossary 145

proper, 20, 61
supermodular, 22
well spaced, 22

graph
constraint, 106
interaction, 2, 105
intersection, 31, 63
random, q.v. Erdős-Rényi model 62
visibility, 81

grid computing, 4

harmonic number, 54
hierarchy, multiagent, q.v. pseudotree 105
hitting set problem, 80
Hungarian method, 19

k-connectivity, 20
k-optimality, 11

Location Design and Vehicle Routing problem, 3–4, 63–79

MANET, q.v. network, mobile ad hoc 2
Mobed, q.v. Multiagent Organization with Bounded Edit Distance (Mobed) 105
multiagent manufacturing, 11
Multiagent Organization with Bounded Edit Distance (Mobed), 16, 105–113
multicast, 5, 11, 77, 80, 94

neighborhood, 105
network

ad hoc, 2
asynchronous, 29
mobile ad hoc, 2, 11
overlay, 2
sensor, 4, 11
Steiner, q.v. Steiner network problem 5
topology, 2

Newton-Raphson method, 55
NP, 140
NP-Complete, 5, 80
NP-Hard, 3, 4, 8, 11, 15, 22, 25, 61, 80, 121, 141

order statistic, 47

P-Complete, 3, 15, 121



146 Chapter A: Notation, Nomenclature, and Glossary

Parallel Random Access Machine (PRAM), 67
path planning, 25
point set polygonization, 92
point-to-point connectivity problem, 20
potential cost, 31, 71
primal, 28
primal-dual schema, 18, 28, 61
primary communication rounds, 37
pseudotree, 8, 97

creation problem, 8–10
generation, initial, 111–113
insertion point, 106–109
merging, 109–111
validity, 105

queuing theory, 13
quiescence, 13, 31

relativity, special theory of, 13

scheduling, distributed, 20
search

bidirectional graph, 25
depth-first (DFS), 9, 113
disk-based, 26
multidirectional graph, 15, 26
unconstrained, 25

secondary communication rounds, 37
simulation

discrete event, 13
Monte Carlo, 55

Steiner network problem, 5, 17, 20, 25, 48, 62–63
strong duality, 19
sum of consecutive order statistics, q.v. trimmed sum 48
supernode, 4
superstability, 97

terminal, 25, 61
tightness, 19, 29
traveling salesman problem, 11, 25
treasury problem, 92
trimmed sum, 48, 54
Two Peasants method, 92

unicast, 77, 94



Chapter A: Notation, Nomenclature, and Glossary 147

variable ordering, q.v. pseudotree 8
vertex cover, 11, 19

weak duality, 19

Z∗, 29

“ Any inaccuracies in this index may be explained
by the fact that it has been sorted with the help

of a computer.”—Donald Knuth
Volume 3 of The Art of Computer Programming





Vitæ Curriculum Brevis

Evan A. Sultanik concurrently earned the degrees of Bachelor of Science in
Mathematics from the Drexel University College of Arts and Sciences and
both Bachelor & Master of Science in Computer Science from the Drexel
University College of Engineering in 2006, having graduated with honors dis-
tinction from Pennoni Honors College. His Masters thesis was on Enabling
Multi-Agent Coordination in Stochastic Peer-to-Peer Environments and was
co-advised by Drs. William C. Regli, Pragnesh Jay Modi, and Moshe Kam.
During that time Evan occupied a joint position in the Drexel University
Geometric and Intelligent Computing Laboratory (GICL), the Applied Com-
munications and Information Networking (ACIN) Institute, and was a de jure
member of the Data Fusion Laboratory (DFL). Upon deciding to continue
his study toward a Ph.D., Evan took on Dr. Ali Shokoufandeh as a co-advisor
to Dr. Regli. In a previous life during the “dot-com bubble”, Evan worked as
a software engineer at the document management company Feith Systems.

Evan is a member of the Association for the Advancement of Artificial
Intelligence (AAAI), the Association for Computing Machinery (ACM), the
Institute for Electrical and Electronics Engineers (IEEE), the IEEE Com-
munications Society, the American Association for the Advancement of Sci-
ence (AAAS), the National Eagle Scout Association (NESA), and the eGullet
Society for Culinary Arts and Letters.

Aside from when he is required to write in a biographical format, Evan
does not often refer to himself in the third grammatical person.

149

http://www.sultanik.com/
http://www.drexel.edu/math/
http://www.drexel.edu/math/
http://www.drexel.edu/
http://www.drexel.edu/coas/
http://www.cs.drexel.edu/
http://www.drexel.edu/coe/
http://www.drexel.edu/honors/
http://records.library.drexel.edu/record=b1627939~S9
http://records.library.drexel.edu/record=b1627939~S9
http://www.cs.drexel.edu/~regli/
http://teamcore.usc.edu/memorial.htm
http://www.moshekam.org/
http://gicl.cs.drexel.edu/
http://www.acincenter.org/
http://www.acincenter.org/
http://www.datafusionlab.org/
http://www.cs.drexel.edu/~ashokouf/
http://www.feith.com/
http://www.aaai.org/
http://www.aaai.org/
http://www.acm.org/
http://www.ieee.org/
http://www.comsoc.org/
http://www.comsoc.org/
http://www.aaas.org/
http://www.aaas.org/
http://www.nesa.org/
http://www.egullet.org/
http://www.egullet.org/




Colophon

The majority of the text of this dissertation was devised at the Applied Com-
munications and Information Networking (ACIN) Institute in Camden, New
Jersey. The text was written using Esterbrook fountain pens1 that were
also devised in Camden, just a couple blocks away from ACIN. The text
was typeset using the LATEX document markup language [102] for the TEX
document preparation system [103]. The bibliography was automatically gen-
erated using BibTEX. Typing and editing were executed using a combination
of Emacs2 and Vim3 on computers running GNU/Linux. All figures were
produced in TikZ4 and all graphs were rendered using Gnuplot6. The æs-
thetics of this document are attributable to these excellent tools.

All of the typefaces used in this dissertation are from the Computer Modern
family7, created by Donald Knuth in METAFONT [104].

This dissertation contains approximately fifty-one thousand fifty-two words
and two hundred eighty-nine thousand five hundred fifty characters, including
those of this sentence.

For additional credits see page vi.

For legal notices see the copyright page.

1Nibs: 9550 (firm extra-fine; bookkeeping), 2284 (broad; signature stub), and 9128
(flexible extra-fine; Pitman shorthand).

2http://www.gnu.org/software/emacs/
3http://www.vim.org/
4TikZ is a recursive acronym for “TikZ ist kein Zeichenprogramm”5. http://

sourceforge.net/projects/pgf/
5. . . which is German for “TikZ is not a drawing program”.
6http://www.gnuplot.info/
7Except for the use of Yannis Haralambous’ Fractur font on page 142 and Knuth’s

METAFONT font above. (Both fonts are also used in this footnote.)

151

http://www-cs-faculty.stanford.edu/~knuth/
http://www.gnu.org/software/emacs/
http://www.vim.org/
http://sourceforge.net/projects/pgf/
http://sourceforge.net/projects/pgf/
http://www.gnuplot.info/
http://omega.enstb.org/yannis/

	Frontmatter
	Title Page
	Abstract

	Mainmatter
	Introduction
	Exemplary Problems & Scenarios
	Location Design & Vehicle Routing Problems
	Art Gallery Problems
	Steiner Network Problems
	Dynamic Organization Problems
	The Pseudotree Creation Problem

	Overview of the Proposed Approach
	Evaluating Multiagent Systems
	Contributions

	Optimization Using the Primal-Dual Schema
	Approximation Algorithms
	The Primal-Dual Schema
	Proper Functions
	Conclusions

	The General Algorithm
	Multidirectional Graph Search
	A Primal-Dual Formulation
	The Distributed Model
	Correctness Proofs

	Efficiency of the Algorithm
	Primary Communication Rounds
	Secondary Communication Rounds
	Time-Approximation Tradeoff
	Local Efficiency

	Conclusions

	Probabilistic Approximation Bounds
	Distributions of Trimmed Sums
	The Exponential Distribution
	Normal Distributions
	The Expected Value of Z

	Solving Constrained Forest Problems
	Steiner Network Problems
	Location Design Problems
	Problem Formalization
	Parallel Computation Model
	Analysis
	Distributing the Algorithm

	Art Gallery Problems
	Distributed Dominating Sets
	The Algorithm
	Empirical Analysis
	Art Gallery Variants

	Conclusion

	Dynamic Agent Organizations
	Online Topology Updates
	Pseudotree Construction
	The Mobed Algorithm
	Analysis

	Conclusions

	Conclusions

	Backmatter
	Notation, Nomenclature, and Glossary
	Notation
	Nomenclature
	Glossary

	Index
	Colophon


