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Combinatorial Optimization
Definition
Combinatorial Optimization is the process of finding an optimal
subset of objects from within a finite set of objects.

Example: the Knapsack Problem

?
8 kg

$4 12 kg$2 1 kg

$2 2 kg

$1 1 kg

$10 4 kg
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Integer Programming Encoding
Given a finite set of n objects each with a value v1, v2, . . . , vn and
a weight w1,w2, . . . ,wn, the knapsack problem asks to find a
subset of the objects whose combined weight does not exceed
a given maximum, wmax, and whose combined value is
maximized:

maximize
n∑

i=1

vixi

subject to:
n∑

j=1

wjxj ≤ wmax,

xk ∈ {0, 1}, k = 1 . . . n,

where the chosen set of objects is
S = {i ∈ {1, 2, . . . , n} : xi = 1}.
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Example

maximize x1$2 + x2$4 + x3$10 + x4$1 + x5$2
subject to:

1x1 + 12x2 + 4x3 + 1x4 + 2x5 ≤ 8 kg,
xk ∈ {0, 1}, k = 1 . . . n.

?
8 kg

$4 12 kg$2 1 kg

$2 2 kg

$1 1 kg

$10 4 kg
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Relevance to Streaming?
I Usually these problems are solved once. But what if the

problem itself changes over time?

?
8 kg

$6 15 kg$1 2 kg

$1 5 kg

$3 2 kg

$12 2 kg

I There is a stream of modification events
to which we must react and re-optimize.
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Dynamic Optimization

maximize x1$2 + x2$4 + x3$10 + x4$1 + x5$2

subject to:
1x1 + 12x2 + 4x3 + 1x4 + 2x5 ≤ 8 kg,
xk ∈ {0, 1}, k = 1 . . . n.

Optimal Solution
x1 = 1, x2 = 0, x3 = 1, x4 = 1, x5 = 1 (Payoff = $15)

Events (Time −→)
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Dynamic Optimization

maximize x1$1 + x2$4 + x3$10 + x4$1 + x5$2

subject to:
1x1 + 12x2 + 4x3 + 1x4 + 2x5 ≤ 8 kg,
xk ∈ {0, 1}, k = 1 . . . n.

Optimal Solution
x1 = 1, x2 = 0, x3 = 1, x4 = 1, x5 = 1 (Payoff = $14)

Events (Time −→)

$2 7→ $1
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Dynamic Optimization

maximize x1$1 + x2$4 + x3$10 + x4$1 + x5$2

subject to:
2x1 + 12x2 + 4x3 + 1x4 + 2x5 ≤ 8 kg,
xk ∈ {0, 1}, k = 1 . . . n.

Optimal Solution
x1 = 1, x2 = 0, x3 = 1, x4 = 0, x5 = 1 (Payoff = $13)

Events (Time −→)

$2 7→ $1 1 kg 7→ 2 kg
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Dynamic Optimization

maximize x1$1 + x2$6 + x3$10 + x4$1 + x5$2

subject to:
2x1 + 12x2 + 4x3 + 1x4 + 2x5 ≤ 8 kg,
xk ∈ {0, 1}, k = 1 . . . n.

Optimal Solution
x1 = 1, x2 = 0, x3 = 1, x4 = 0, x5 = 1 (Payoff = $13)

Events (Time −→)

$2 7→ $1 1 kg 7→ 2 kg $4 7→ $6
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Dynamic Optimization

maximize x1$1 + x2$6 + x3$10 + x4$1 + x5$2

subject to:
2x1 + 15x2 + 4x3 + 1x4 + 2x5 ≤ 8 kg,
xk ∈ {0, 1}, k = 1 . . . n.

Optimal Solution
x1 = 1, x2 = 0, x3 = 1, x4 = 0, x5 = 1 (Payoff = $13)

Events (Time −→)

$2 7→ $1 1 kg 7→ 2 kg $4 7→ $6 12 kg 7→ 15 kg
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Dynamic Optimization

maximize x1$1 + x2$6 + x3$10 + x4$1 + x5$2

subject to:
2x1 + 15x2 + 4x3 + 1x4 + 2x5 ≤ 20 kg,
xk ∈ {0, 1}, k = 1 . . . n.

Optimal Solution
x1 = 0, x2 = 1, x3 = 1, x4 = 1, x5 = 0 (Payoff = $17)

Events (Time −→)

$2 7→ $1 1 kg 7→ 2 kg $4 7→ $6 12 kg 7→ 15 kg = 20 kg
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Distributed Optimization
A set of agents distributedly decide which objects to choose.

?
8 kg

$4 12 kg$2 1 kg

$2 2 kg

$1 1 kg

$10 4 kg
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Distributed Optimization
Each agent only knows about a subset of the objects.

?
8 kg

$4 12 kg$2 1 kg

$2 2 kg

$1 1 kg

$10 4 kg
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Distributed Optimization
They will have to negotiate to solve the problem.

?
8 kg

$4 12 kg$2 1 kg

$2 2 kg

$1 1 kg

$10 4 kg
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Why Distribute?

Privacy No single agent knows the entire world-state.
Example: Meeting Scheduling

Locality The problem is naturally distributed; extra effort is
required to centralize the world-state for a
centralized optimization algorithm.
Example: Sensor Networks

Efficiency Each agent is, in effect, its own processor, so we
might achieve a speedup from parallelism.
Example: Cloud Computing

a2
a1

a3

a4
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Space Complexity
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Stable

a Heapsort

b Merge sort

c Introsort

d Bubblesort

e Strand sort

f Quicksort†

g Brute force (DFS)

h Bogosort

†Assuming that memory pointers require logarithmic space.
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Efficient Sequential Algorithms

I Moore’s Law: processor speed doubles about every two
years.

I If an algorithm has computational complexity O(nc) and
current hardware can only solve problems of size n, then
we will only have to wait O(log n) years1 until hardware can
solve a problem of size n + 1.

I Conclusion: polynomial runtime is desirable in sequential
algorithms!

1More precisely, about c× log2

(
n+1

n

)
years.
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Space Complexity
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a DSA

b (BnB-)Adopt

c DPOP

d MB-DPOP(1)
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Latency

Conclusion
In distributed
algorithms, there is
no equivalent to
Moore’s law! Number
of different metrics to
optimize (e.g.,
rounds, messages,
latency, &c.).
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When to distribute?

Network Topology

Interaction Graph

a1

a2

a3
a4

a5

a6

I the problem itself is naturally distributed;
I local properties of the problem seem to allow for speedups

from distributed processing;
I in certain environments, such as sensor networks,

hardware restrictions might necessitate decentralization in
order to save memory/power/&c.;

I privacy (no central node can be trusted); and
I ultimately need O(n) messaging rounds.
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Constraint Reasoning
(a.k.a. “Constraint Programming”)

Idea: Model problems as systems of constraints.

I Set of variables: V = {v1, v2, . . . , vn}
I Each variable has an associated domain from which it can

be assigned a value: D = {D1,D2, . . . ,Dn}.
I There are a set of constraints that dictate costs for certain

variable assignments:

f :
⋃

S∈2V

∏
vi∈S

({vi} × Di)→ R.
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Example: Graph Coloring
Graph G = 〈V,E〉:

C

A B

D!

V = {vA, vB, vC, vD}
DA = DB = DC = {�,�,�}

f (〈vi, dk〉, 〈vj, d`〉) 7→ 1 if 〈vi, vj〉 ∈ E ∧ dk = d`.

(incur a cost of 1)
(two neighboring vertices are
assigned the same color)

Goal
Find a mapping from variables to domains that minimizes f .
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Acyclic Constraint Graphs
Consider this graph coloring problem.

A

B

C

D

E

F

A B C D E F

A B C D E F
��� ��� ��� ���

�

�

�

�

��

A Common Approximation:
Remove constraints until the constraint graph becomes acyclic!
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Acyclic Constraint Graphs
Note that E and F have unary constraints dictating their colors.

A

B

C

D

E

F

A B C D E F

A B C D E F
��� ��� ��� ���

�

�

�

�

��

A Common Approximation:
Remove constraints until the constraint graph becomes acyclic!
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Acyclic Constraint Graphs
Perform a DFS traversal of the constraint graph. . .

A

B

C

D

E

F A B C D E F

A B C D E F
��� ��� ��� ���

�

�

�

�

��

A Common Approximation:
Remove constraints until the constraint graph becomes acyclic!
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Acyclic Constraint Graphs
In reverse order, remove inconsistent entries in the domains.

A

B

C

D

E

F A B C D E F

A B C D E F
��� ��

�

���

��

�

�

�

�

�

��

A Common Approximation:
Remove constraints until the constraint graph becomes acyclic!
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Acyclic Constraint Graphs
Working in order, choose values remaining in the domains.

A

B

C

D

E

F A B C D E F

A B C D E F
�

�� �

�

�

�

�� ��
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A Common Approximation:
Remove constraints until the constraint graph becomes acyclic!

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 23



Acyclic Constraint Graphs

This algorithm runs in O(|D|2|V|) time.
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A Common Approximation:
Remove constraints until the constraint graph becomes acyclic!
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Distributed Constraint Reasoning

Idea: Model inherently distributed problems as systems of
constraints.

Number of Players
ONE MULTIPLE

Problem
Dynamism

STATIC
Mathematical
Programming

(Static) Game
Theory

DYNAMIC
Optimal Control

Theory
Dynamic/Differential

Game Theory

DCR

Streaming

Definition
An “Agent” is a situated computational process
with one or more of the following properties:
autonomy, proactivity and interactivity.

Variables are assigned by agents:

8 kg

$4 12 kg$2 1 kg

$2 2 kg

$1 1 kg

$10 4 kg
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Algorithms: DisCSP

Early DCR research focused on DisCSP:

I Asynchronous Backtracking (1992)
I Asynchronous Weak-Commitment (1994)
I Distributed Breakout (1995)← local search
I Distributed Forward Checking (2000)
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Distributed Stochastic Algorithm
I Idea: Perform a greedy, local search.
I Very fast!
I No guarantee of optimality (can get stuck in local minima).

Example: Graph Coloring

C

A B

D

!

!

!

W. Zhang, G. Wang, and L. Wittenburg
Distributed Stochastic Search for Constraint Satisfaction and Optimization:
Parallelism, Phase Transitions and Performance
In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002.
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Distributed Stochastic Algorithm
I Idea: Perform a greedy, local search.
I Very fast!
I No guarantee of optimality (can get stuck in local minima).

Each agent controls a vertex.

!

!

!

W. Zhang, G. Wang, and L. Wittenburg
Distributed Stochastic Search for Constraint Satisfaction and Optimization:
Parallelism, Phase Transitions and Performance
In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002.
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Distributed Stochastic Algorithm
I Idea: Perform a greedy, local search.
I Very fast!
I No guarantee of optimality (can get stuck in local minima).

Agents randomly choose a value from their domain. . .

!

!

!

W. Zhang, G. Wang, and L. Wittenburg
Distributed Stochastic Search for Constraint Satisfaction and Optimization:
Parallelism, Phase Transitions and Performance
In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002.
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Distributed Stochastic Algorithm
I Idea: Perform a greedy, local search.
I Very fast!
I No guarantee of optimality (can get stuck in local minima).

. . . then broadcast their choices to neighbors.

!

!

!

W. Zhang, G. Wang, and L. Wittenburg
Distributed Stochastic Search for Constraint Satisfaction and Optimization:
Parallelism, Phase Transitions and Performance
In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002.
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Distributed Stochastic Algorithm
I Idea: Perform a greedy, local search.
I Very fast!
I No guarantee of optimality (can get stuck in local minima).

If conflict, choose another value given neighbors’ choices.

!

!

!

W. Zhang, G. Wang, and L. Wittenburg
Distributed Stochastic Search for Constraint Satisfaction and Optimization:
Parallelism, Phase Transitions and Performance
In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002.
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Distributed Stochastic Algorithm
I Idea: Perform a greedy, local search.
I Very fast!
I No guarantee of optimality (can get stuck in local minima).

Re-broadcast to neighbors.

!

!

!

W. Zhang, G. Wang, and L. Wittenburg
Distributed Stochastic Search for Constraint Satisfaction and Optimization:
Parallelism, Phase Transitions and Performance
In Proceedings of the AAAI Workshop on Probabilistic Approaches in Search, 2002.
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Distributed Stochastic Algorithm
I Idea: Perform a greedy, local search.
I Very fast!
I No guarantee of optimality (can get stuck in local minima).

Resolve conflicts.

!

!

!

W. Zhang, G. Wang, and L. Wittenburg
Distributed Stochastic Search for Constraint Satisfaction and Optimization:
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Provably Optimal DCOP
Algorithms

Idea: Maintain a structure (like a spanning tree) to organize the
problem.

I parallel asynchronous exploration of disjoint subproblems,
reminiscent of iterative A* search (ADOPT, 2003);

I incremental partial centralization (OptAPO, 2004);
I dynamic programming (DPOP, 2006); and
I distributed branch-and-bound, both synchronous (NCBB,

2006) and asynchronous (BnB-ADOPT, 2007);
I hybrid additionally using local search (ADOPT-ing, 2007).
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Dynamic (i.e., Streaming) DCR

I DSA: Every time a modification event occurs, simply
re-resolve conflicts!

I Pseudotree-Based Algorithms: Need a method to
dynamically maintain a depth-first spanning tree (e.g.,
Superstabilizing DFS [Collin & Dolev, 1994] or Mobed
[Sultanik, et al., 2010]).

I Alternative: Use an adapter that automatically resets the
algorithm whenever an event occurs that invalidates the
current state.
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Dynamic (i.e., Streaming) DCOPs

The Dynamic DCR “Adapter”

Out

In

Reset

DCR Algo.
Adapter

Out

In

Reset

DCR Algo.
AdapterM

es
sa

ge
Message

Message

M
essage

Message

Message

Out

In

Out

In

Network

R. Lass, E. Sultanik, and
W. Regli
Dynamic Distributed Constraint
Reasoning.
In Proceedings of the
Twenty-Third AAAI Conference
on Artificial Intelligence, 2008.

If the adapter detects
an event that
invalidates the current
state of the algorithm,
re-solve from scratch.
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General Approximation Schema

Optimization Problem

Integer Programming Formulation (IP)

Relaxed to a Continuous Optimization Formulation

Solution to the Continuous Problem

Approximated Solution to (IP)
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The Primal-Dual Formulation

For any linear program there is a dual linear program:

max ctx
s.t. Ax≥b

x≥0
⇐⇒

min bty
s.t. Aty≤c

y≤0
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The Steiner Forest Problem

Example

1

2

3

4

5

Objective: Find a mini-
mum weight forest (e.g.,

) that connects all
nodes to each other, pos-
sibly utilizing nodes.
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Example: Encoding Steiner Forest
Whether or not an edge e will be in the forest: xe ∈ {0, 1}.

min
∑
e∈E

w(e)xe

s.t.
∑

e∈δ(S)

xe ≥ f (S), ∀S ⊂ V : S 6= ∅

xe ≥ 0, ∀e ∈ E,

max
∑
S⊂V

f (S)yS

s.t.
∑

S:e∈δ(S)

yS ≤ we, ∀e ∈ E

yS ≥ 0, ∀S ⊂ V : S 6= ∅.

1

2

3

4

5

M. Aggarwal and N. Garg
A Scaling Technique for
Better Network Design.
In Proceedings of the Fifth
Annual ACM-SIAM
Symposium on Discrete
Algorithms, 2001.

Note: looks like exponential constraints!
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Example: Encoding Steiner Forest
The weight of edge e: w(e).
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Properties of the Schema
TERM MEANING
OP Optimization Problem
IP Integer Programming Formulation of OP
LP Continuous Optimization Relaxation of IP
D The Dual of LP
Z∗LP/Z∗D/Z∗IP Cost of the Optimal Solution to LP/D/IP

NAME PROPERTY

Weak Duality The cost of any feasible solution
to D is a lower bound on the so-
lution to LP.

Strong Duality Z∗D = Z∗LP ≤ Z∗IP
Complementary Slackness A primal variable can be posi-

tive iff its associated dual con-
straint is tight.
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Algorithmic Form of the
Primal-Dual Schema

1: procedure PRIMAL-DUAL(IP)
2: Let (CO) be the continuous optimization relaxation of (IP).
3: Let (D) be the dual to (CO).
4: Initialize vectors x = 0 and y = 0 which are, respectively, the solutions for (CO)

and (D). /* Note that y will initially be dual feasible, but x will not necessarily be
primal feasible. */

5: while x is primal infeasible do
6: While maintaining dual feasibility, deterministically increase the dual values

yi until one dual constraint becomes tight (i.e., that variable cannot be increased
any more without breaking a dual constraint).

7: For a subset of the tight dual constraints, increase the primal variable
corresponding to them by an integral amount.

8: The cost of the dual solution is used as a lower bound on OPT.

V. Vazirani
Approximation Algorithms.
Springer-Verlag, Berlin, 2001.
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The (Sequential) Algorithm

1

2

3

4

5

(We will assume unit

edge weights for

simplicity.)

d(1) = 1.5 F = {{1, 2}, {1, 3}, {3, 4}}
d(2) = 1.5 C = {{1, 2, 3, 4}, {5}}
d(3) = 0.5 e = 〈3, 4〉
d(4) = 1.5 ε = 0.5
d(5) = 0

←↩ Restart Prev Next Skip Execution

1: procedure CONSTRAINED-FOREST(G, w, f )
2: F ← ∅ /* Implicitly set yS for all S ⊂ V */

3: C ← {{v} : v ∈ V}
4: for all v ∈ V do
5: d(v)← 0
6: while ∃C ∈ C : f (C) = 1 do

7: Find an edge e = 〈i, j〉 such that µ(i) 6= µ(j) and ε =
w(e)− d(i)− d(j)

f (µ(i)) + f (µ(j))
is minimized.

8: F ← F ∪ {e}.
9: for all v ∈ V do

10: d(v)← d(v) + ε· f (µ(v)) /* Implicitly set yC ← yC + ε· f (C) for all C ∈ C. */
11: C ← C ∪ {µ(i) ∪ µ(j)} − {µ(i)} − {µ(j)}
12: F ← {e ∈ F : For some connected component N of (V, F − {e}), f (N) = 1)}

D. Williamson, M. Goemans, M. Mihail, and V. Vazirani
A primal-dual approximation algorithm for generalized steiner network problems.
Combinatorica, 15(3):435–454, 1995.

Can solve other problems for different f !
More on this in a bit. . .

Local Computation!
Modulo some handling of race conditions. . .
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Generalizing the Indicator Function
min

∑
e∈E

w(e)xe

s.t.
∑

e∈δ(S)

xe ≥ f (S), ∀S ⊂ V : S 6= ∅

xe ≥ 0, ∀e ∈ E,

max
∑
S⊂V

f (S)yS

s.t.
∑

S:e∈δ(S)

yS ≤ we, ∀e ∈ E

yS ≥ 0, ∀S ⊂ V : S 6= ∅.

Steiner Forest: f (S) = 1 iff ∅ 6= S ∩ { 1 , 2 , 4 } 6= { 1 , 2 , 4 }

“Wouldn’t it be totally radical if we could solve a seemingly
completely different problem simply by tweaking the defi-
nition of f ?∗ ”∗ May not be a direct quote.

M. Goemans and D. Williamson
A General Approximation Technique for Constrained Forest Problems.
SIAM Journal on Computing, 24:296–317, 1995.
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Constrained Forest Problems
min

∑
e∈E

w(e)xe

s.t.
∑

e∈δ(S)

xe ≥ f (S), ∀S ⊂ V : S 6= ∅

xe ≥ 0, ∀e ∈ E,

max
∑
S⊂V

f (S)yS

s.t.
∑

S:e∈δ(S)

yS ≤ we, ∀e ∈ E

yS ≥ 0, ∀S ⊂ V : S 6= ∅.
NAME PROBLEM f (S) = 1 iff . . .
Minimum-weight per-
fect matching

Find a minimum-cost set of non-adjacent
edges that cover all vertices.

|S| is odd.

T-join Given an even subset T of vertices, find a
minimum-cost set of edges that has odd
degree at vertices in T and even degree
at vertices not in T.

|S ∩ T| is odd.

Minimum spanning
tree/forest

Find a minimum weight forest that maxi-
mizes connectivity between vertices.

∃u ∈ S, v /∈ S : u  v ∈ G

Generalized Steiner
tree

Find a minimum-cost forest that connects
all vertices in Ti for i = 1, . . . , p.

∃i ∈ {1, . . . , p} : ∅ 6= S ∩ Ti 6= Ti.

Point-to-point connec-
tion

Given a set C = {c1, . . . , cp} of
sources and a set D = {d1, . . . , dp}
of destinations in a graph G = 〈V, E〉,
find a minimum-cost set F of edges such
that each source-destination pair is con-
nected in F.

|S ∩ C| 6= |S ∩ D|.

Partitioning (w/triangle
inequality)

Find a minimum-cost collection of vertex-
disjoint trees, paths, or cycles that cover
all vertices.

S 6≡ 0(mod k).

Location design/routing Select depots among a subset D of ver-
tices of a graph G = 〈V, E〉 and cover
all vertices in V with a set of cycles, each
containing a selected depot, while mini-
mizing the sum of the fixed costs of open-
ing depots and the sum of the costs of
the edges in the cycles.

∅ 6= S ⊆ V
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Proper Functions
min

∑
e∈E

w(e)xe

s.t.
∑

e∈δ(S)

xe ≥ f (S), ∀S ⊂ V : S 6= ∅

xe ≥ 0, ∀e ∈ E,

max
∑
S⊂V

f (S)yS

s.t.
∑

S:e∈δ(S)

yS ≤ we, ∀e ∈ E

yS ≥ 0, ∀S ⊂ V : S 6= ∅.

A function on the powerset of a set of vertices, f : 2V → {0, 1},
is said to be proper if the following are true:

PROPERTY NAME RULE

Null f (∅) = 0
Symmetry ∀S ⊆ V : f (S) = f (V − S)

Disjointness ∀A,B ⊆ V : (A ∩ B = ∅)
=⇒ f (A ∪ B) ≤ max{f (A), f (B)}.
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Proper Functions (Continued)

I If f is proper then the sequential algorithm will. . .
I . . .run in polynomial time; and
I . . .produce a solution that is 2-OPT

(i.e., the cost will be no more than two times the cost of the
optimal solution).

I “Constrained Forest Problems”
I Many constrained forest problems are NP-HARD.
I Various extensions (e.g., supermodular, well spaced, &c.).

Surprise!
The sequential 2-approximation result can be generalized to a
large family of functions and efficiently distributed for optimizing
over streams.
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“Natural” Organization
Scott Aaronson
NP-complete Problems and Physical Reality
SIGACT News 36(1):30–52, 2005.
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Search
(Foreshadowing!)

I DFS: Stack
I BFS: Queue
I Best-first: Priority

Queue
I A∗: Priority Queue with

Heuristic
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Bidirectional Search

I Modified GOAL-TEST and
an optimal search 
guaranteed optimality.

I Speedup from
parallelism.

I Question: What if Erdős
wants to join the party? ?
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Multidirectional Graph Search?
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Multidirectional Graph Search
Challenges

I How do we prevent cycles?

I How do we ensure correctness/completeness?
I Optimality?
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Generalized Distributed
Constrained Forest Algorithm
for Multidirectional Graph Search

1: procedure MULTIDIRECTIONAL-GRAPH-SEARCH(v)
Require: v is the start vertex running this search.
Ensure: H = 〈Ṽ, Ẽ〉 is the resulting forest.

2: Ṽ ← {v}
3: Ẽ← ∅
4: F ← our neighbors /* The fringe of our search */
5: g(v)← 0 for all v ∈ V /* Initialize the path-cost function to 0 */
6: while Our interaction constraints are still unsatisfied do
7: Find an edge e = 〈u, v〉 in the fringe that minimizes ε = w(e)− g(u)− g(v)
8: if u either is being or already was expanded by another search then
9: Merge our execution with u’s search.

10: if The other search also expanded the edge 〈v, u〉 in this round then
11: ε← ε

2

12: for all k ∈ Ṽ : k is incident to an edge in the fringe do
13: g(k)← g(k) + ε /* Update the path-cost */
14: F ← (F \ {e}) ∪ δ({u}) /* Update the fringe with e’s successors */
15: Ṽ ← Ṽ ∪ {u} /* Add u to the final forest */
16: Ẽ← Ẽ ∪ {e} /* Add e to the final forest */

Initialization
Set up the fringe and path-cost functions.Goal-Test Function

Keep on searching until all of the constraints are

satisfied.

Remove Node from Fringe
The fringe is prioritized using a special potential

function heuristic.

Path-Cost Update
Update the open nodes.

Successors
Add successors to the fringe.

Gradient!
This is the potential function that will ensure 2-OPT.

Dual Variables
The path-cost implicitly initializes the dual variables.

Pushing Up the Duals
Implicitly sets yṼ ← yṼ + ε.

Goal-Test Function
If the goal-test function is a proper function, we can

solve many other problems!
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Update the open nodes.

Successors
Add successors to the fringe.

Gradient!
This is the potential function that will ensure 2-OPT.

Dual Variables
The path-cost implicitly initializes the dual variables.

Pushing Up the Duals
Implicitly sets yṼ ← yṼ + ε.

Goal-Test Function
If the goal-test function is a proper function, we can

solve many other problems!

E. A. Sultanik APPLIED PHYSICS LABORATORY Distributed Combinatorial Optimization October 11, 2011 51



Generalized Distributed
Constrained Forest Algorithm
for Multidirectional Graph Search

1: procedure MULTIDIRECTIONAL-GRAPH-SEARCH(v)
Require: v is the start vertex running this search.
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Technical Sketch
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I Guaranteed message

delivery, but arbitrary
latency.
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Dynamic/Streaming Problems
1. In certain well-defined cases, after a modification event the

algorithm can be continued and is still guaranteed to
produce a 2-optimal solution.

I If the weights of all of v’s
incident edges are greater
than or equal to the slack
of all of their neighboring
vertices’ fringe nodes:

v

u1

u2

..
.

u3

. . .

uk. . .

i1

j1

i2 j2

i3

j3

. . .

. .
.

. .
.

2. In all other cases, we can backtrack to the most recent
round during which the conditions allowed for the dynamic
modification.

3. Worst case: backtrack to the start, which is only O(n)
rounds.

4. Backtracking only increases memory/computation
polynomially.
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Example Domains
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Robot Teaming

a2

a3

a1

a4

I Group of mobile robots each equipped with a wireless
access point.
I Objective of the robots: maximally cover an area with the

wireless network.
I In order to save power: Choose a maximum subset of

robots that can lower their transmit power while still
retaining coverage.

E. Sultanik, A. Shokoufandeh, and W. Regli
Dominating Sets of Agents in Visibility Graphs: Distributed Algorithms for Art
Gallery Problems.
In Proceedings of the Ninth International Conference on Autonomous Agents
and Multiagent Systems, May 2010.
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Art Gallery Problems
Example
Find the minimum number of guards required to observe the
interior of a polygonal area.

Variants
I Guards in the interior.
I Treasures.
I Non-uniform cost for stationing a guard.
I NP-COMPLETE.
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Equiv. as a Connectivity Problem

Augment each vertex with a special guard vertex (“ ”).
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Connectivity Problem: Find an acyclic subgraph such that:
1. every is connected to a by a path of length ≤ 2; and
2. the subgraph’s weight is minimized.
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Equiv. as a Connectivity Problem

Weight the new edges with the cost of guarding from there.
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Connectivity Problem: Find an acyclic subgraph such that:
1. every is connected to a by a path of length ≤ 2; and
2. the subgraph’s weight is minimized.
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Equiv. as a Connectivity Problem

Weight the original visibility graph edges 0.
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Technical Sketch

Round 0: All Vertices are Unguarded (“ ”)
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Technical Sketch

Round 1: Unguarded components add cut-edge of
min. potential.
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Technical Sketch

Round 2: Unguarded components add cut-edge of
min. potential.
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Technical Sketch

Round 3: Unguarded components add cut-edge of
min. potential.
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Technical Sketch

Round 4: Unguarded components add cut-edge of
min. potential.
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Technical Sketch

Round 5: Unguarded components add cut-edge of
min. potential.
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Technical Sketch

Round 6: All nodes are guarded, so we terminate.
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Conclusions

I Certain streams data processing problems can be cast as
a dynamic/distributed multiagent optimization problem.

I Measuring the performance of distributed algorithms is
hard.

I In most cases, we want O(n) communication rounds.
I Distributed constraint reasoning is a powerful model that is

useful for many problems.
I Approximation algorithms are often useful and sometimes

necessary.
I The Primal-Dual Schema is a very powerful tool for

approximation.
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Thank you for your time and attention.

Questions?

Evan A. Sultanik
Evan.Sultanik@jhuapl.edu
http://www.sultanik.com/
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